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1. Introduction

The QDX is a high performance, four-band 5W Digital modes transceiver with CAT control and 
built-in USB sound card. QRP Labs presents QDX, a digital transceiver with a ratio of performance
to price not available until now. 

• Four band 80, 40, 30 and 20m; 5 W from 9 – 10V supply
• Clean single signal output (zero residual carrier, zero unwanted sideband)
• Solid state PIN-diode switched Low Pass Filters and solid state Band Pass Filters
• Solid state transmit/receive switching
• High performance embedded-SDR SSB receiver using 110dB 24-bit stereo ADC chip
• Built-in USB sound card: 48ksps 24-bit stereo 
• Built in USB Virtual COM port serial for CAT control
• Si5351A Synthesized local oscillator with better than 0.001Hz resolution and high precision 

25MHz TCXO reference as standard 
• Built-in signal generator
• Built-in suite of configuration and analysis tools
• Lifetime free firmware upgrades with QRP Labs Firmware Update (QFU) bootloader for 

easy firmware update on any OS with no extra software, or drivers, or programming 
hardware

• All SMD components pre-installed by factory, only through-hole component soldering by the
kit constructor

• Receive current: 100mA; Transmit current 1.0 – 1.1A (9V supply, 5W output)
• Only three connectors: USB (audio and serial for CAT), Power and RF
• Optional smart aluminium extruded enclosure measuring just 89 x 63 x 25mm

No test equipment is required to build, align and operate this digi modes transceiver. There are no 
alignment tasks. 

We hope you enjoy building and operating this kit! Please read this manual carefully, and follow 
the instructions step by step in the recommended order. Later in the manual the circuit design is 
described in detail and we recommend reading and understanding this section too, to get the 
maximum enjoyment and education from your new radio. 

Typical performance measurements are shown in the measurements section. The operation 
section will get you started with QDX and your WSJT-X or other digi modes software in minutes. 

PLEASE READ THE BASIC ASSEMBLY AND USE INSTRUCTIONS IN
THIS MANUAL VERY CAREFULLY BEFORE APPLYING POWER TO 
THE BOARD!
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IMPORTANT!

QDX can be built for 9V or 12V operation! You need to decide NOW!

A 9V QDX produces 5 W power output from a supply voltage of 9V or a little over. At 12 V QDX 
could be producing 8 W power output which is likely to cause over-heating and perhaps failure of 
the BS170 final transistors. 

Operation of QDX at more than 6W power output is NOT RECOMMENDED. 

If you wish to operate using a 12 V supply, you may use a two turn secondary winding on the 
output transformer T1, so a 3:2 ratio instead of the 3:3 turns ratio documented in this manual. 
Remember this when you come to the assembly step for preparing and installing the output 
transformer T1. The “primary” is still 3 turns, with a tap half way at 1.5 turns. The secondary (no 
tap) will now be only two turns. 

The chart below shows the measured power output vs supply voltage for the standard 3:3 winding 
(Red line); at 12 V supply the output power of around 8 W is too high and likely to cause over-
heating or failure of the power amplifier transistors. If you wish to use a supply of 12 - 13 V the 3:2 
winding style is more suitable and will produce 4 – 5 W output for 12 – 13 V supply. The graph 
shows 40m but other bands are very similar. 
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2. Assembly

2.1 General guidelines

Assembly of this kit is quite straightforward, most components are SMD and have already been 
pre-assembled by the PCB factory. The usual kit-building recommendations apply: work in a well-
lit area, with peace and quiet to concentrate. Some of the other semiconductors in the kit are 
sensitive to static discharge. Therefore, observe Electrostatic discharge (ESD) precautions.

And I say it again: FOLLOW THE INSTRUCTIONS!!
Don’t try to be a hero and do it without instructions!

A jeweler's loupe is really useful for inspecting small
components and soldered joints. You’ll need a fine-
tipped soldering iron too. It is good to get into the habit of
inspecting every joint with the magnifying glass or
jeweler's loupe (like this one I use), right after soldering.
This way you can easily identify any dry joints or solder
bridges, before they become a problem later on when
you are trying to test the project.

You could also take photos with a mobile phone, and use
the phone’s zoom features to view the board in detail.

Triple check every component value and location BEFORE soldering the component!

It is easy to put component leads into the wrong holes, so check, check and check again! It is 
difficult to de-solder and replace components, so it is much better to get them correctly installed 
the first time. In the event of a mistake, it is always best to detect and correct any errors as early 
as possible (immediately after soldering the incorrect component). Again, a reminder: removing a 
component and re-installing it later is often very difficult! 

Please refer to the layout diagram and PCB tracks diagrams below, and follow the steps carefully.

Use of a good quality soldering iron and solder is highly recommended for best results!

The following diagrams show the PCB layout and track diagrams of the QDX.

Tracks shown in BLUE are on the bottom layer. Tracks shown in RED are on the top layer. There 
are only two layers (nothing is hidden in the middle). Not shown in this diagram are the extensive 
ground-planes, on both sides of the board. Practically everything on both layers that isn’t a RED or
BLUE track, is ground-plane! The two ground-planes are connected at frequent intervals (not more
than 0.1-inches) by vias. 

NOTE: the capacitor lead spacing on the PCB is 0.1-inches (2.54 mm) and most of the capacitors 
are sized appropriately for this. From time to time, due to availability constraints, we may have to 
use capacitors with 0.2-inch lead spacing (5.08 mm); this is not a mistake, it is just due to 
component availability. In this case simply use a pair of long-nosed pliers (etc) to straighten out 
the wires and make them spaced for the 0.1-inch pads. 
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2.2 Parts list

Many components are SMD, pre-soldered to the PCB in the factory. Only through-hole 
components need to be installed by the constructor. SMD components in the parts list are 
identified in the Description column and by the text colour being purple. 

Resistors 

Qty Value Description Component numbers

3 0-ohms SMD R30, 31, 32

4 100-ohms SMD R22, 23, 24, 25

2 330-ohms SMD R2, 4

2 470-ohms SMD R28, 33

4 1K SMD R1, 6, 20, 21
1 1.5K SMD R34 (NOT INSTALLED)

12 10K SMD R3, 5, 10, 11, 12, 13, 14, 17, 18, 26, 27, 29
3 100K SMD R15, 16, 19

3 470K SMD R7, 8, 9

Capacitors (50V, Multi-layer Ceramic capacitors)

Qty Value Description Component numbers

1 22pF Label “220” C29

1 30pF Label “300” C31

2 47pF SMD C27, 32
2 56pF Label “56J” C10, 28

1 82pF Label “820” C11
1 100pF Label “101” C9

1 180pF Label “181” C20
1 220pF Label “221” C30

1 270pF Label “271” C7
2 390pF Label “391” C6, 19

2 470pF Label “471” C5, 14
2 820pF Label “821” C13, 18

1 1200pF Label “122” C12
3 10nF SMD C36, 44, 45

21 0.1uF SMD C15, 16, 17, 21, 22, 23, 24, 25, 26, 33, 35, 37, 39, 40,
41, 43, 46, 47, 49, 51, 53

11 2.2uF SMD C1, 2, 3, 4, 8, 34, 38, 42, 48, 50, 52

1 220uF 16V electrolytic Extra DC supply capacitor (see text)
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Semiconductors

Qty Description Component numbers

5 SMD: 1N4148 D7, 8, 9

6 1N4007 diode D1, 2, 3, 4, 5, 6

1 SMD: AMS1117-3.3 IC1
1 SMD: AMS1117-5.0 IC2

2 SMD: FST3253 IC3, 4
1 SMD: 74ACT08 IC5

1 SMD: 24C64 IC6
1 SMD: LM4562 IC7

1 STM32F401RBT6 IC8
1 AK5386 IC9

1 SMD: Si5351A U1
1 SMD: BSS84 MOSFET Q1

5 SMD: BSS123 MOSFET Q2, 3, 4, 5, 6
4 BS170: TO92 MOSFET Q8, 9, 10, 11

1 SMD: BC857 PNP T3
1 SMD: BC817 NPN T4

1 SMD: Red LED DIAG
1 3mm Red LED PANEL

Inductors

Qty Description Component numbers

6 SMD: 47uH L11, 13, 15, 16, 17, 18

4 47uH radial inductor L1, 5, 7, 9 (replace SMD inductors, see text)

1 T37-2 toroid (red), 2.40 uH (24t) L2

1 T37-2 toroid (red), 2.88 uH (26t) L6
1 T37-6 toroid (yel), 1.06 uH (18t) L3

1 T37-6 toroid (yel), 393 nH (11t) L4
1 T37-6 toroid (yel), 1.20 uH (20t) L8

1 T37-6 toroid (yel), 525 nH (13t) L10
1 T50-2 toroid – tapped, see text L12

1 FT37-43 10t L14
1 BN43-202 binocular, 3:3 T1

1 FT37-43 10t trifilar T2
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Miscellaneous

Qty Value Description

1 2.1 mm DC 2.1 x 5.5 barrel DC power connector

1 USB B USB type B connector

1 BNC RF connector
1 25 MHz TCXO module Replaces 25 MHz crystal – see text

1 25 MHz HC49/4H quartz crystal – NOT USED
1 PCB Main PCB, 86 x 59.5 mm

1 310 cm 0.33 mm diameter wire (AWG #28)
1 50 cm 0.60 mm diameter wire (AWG #22)

1 M3 12 mm Steel 12mm long M3 screw
1 M3 Steel M3 nut

1 M3 12 mm Steel 12mm diameter M3 washer

Enclosure (OPTIONAL)

Qty Value Description

2 Top, Bottom Extruded aluminium top and bottom cover

1 Front panel Laser etched, drilled for 3mm LED

1 Rear panel Laser etched, drilled for three connectors
8 M2.5 machine screw Screws to secure end panels

4 Rubber foot Self-adhesive rubber foot
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2.3 Inventory parts
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2.4 Install all the ceramic capacitors

Install all 16 through-hole capacitors in accordance with the following diagram. The procedure is 
so easy that I have included all capacitors in a single assembly step rather than doing one 
diagram for each capacitor value. Nevertheless be very careful to insert the correct value 
capacitors in the correct places. Mistakes are hard to correct later.

In the diagram, the component label (capacitor body inscription) is written inside the capacitor 
body which is coloured yellow. The actual value e.g. 220pF is written in red text next to the 
capacitor. Note that the leads of the 56pF capacitor (“56J”) need to be bent to fit the 2.5mm holes. 

Qty Value Description Component numbers

2 470pF Through-hole, label “471” C5, 14

2 390pF Through-hole, label “391” C6, 19

1 270pF Through-hole, label “271” C7

1 100pF Through-hole, label “101” C9

2 56pF Through-hole, label “56J” C10, 28

1 82pF Through-hole, label “820” C11

1 1200pF Through-hole, label “122” C12

2 820pF Through-hole, label “821” C13, 18

1 180pF Through-hole, label “181” C20

1 22pF Through-hole, label “220” C29

1 220pF Through-hole, label “221” C30

1 30pF Through-hole, label “300” C31
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2.5 Install 1N4007 diodes

Install the six 1N4007 diodes D1-D6. 

Pay attention to the orientation of the diodes which is critically important. The diodes have a black 
body and a white stripe. The white stripe end must be aligned with the white stripe on the image 
on the PCB silkscreen. In the diagram below, all the white stripe ends of the diodes are on the left 
of each diode position. 

So far, the assembly should
look like this → 
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2.6 Install PA transistors

Install the transistors in the positions shown, with their flat faces flush against the PCB. 

Use the 12mm M3 bolt, washer and nut to firmly press the transistor faces against the PCB, as 
shown. 

Refer to the diagram and photographs below. 
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2.7 Install QRP Labs QDX TCXO module

The QDX TCXO module is a small PCB containing the actual TCXO and two capacitors. It is to be 
installed on the QDX PCB instead of the crystal marked “Q7”. 

First use three pieces of wire, off-cuts from the capacitor leads soldered in step 2.4. Solder them in
the positions shown, soldering on the bottom side of the board (Photo, below left). 

Next, slide the TCXO module onto the wires and lower it to sit flat on the main QDX PCB. Solder 
the wires carefully and quickly – the TCXO PCB is only a single sided board so the pads will not 
withstand a lot of heat or abuse – then carefully cut off the excess wire. The result is as shown 
(photo, below right). 
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2.8 Assemble and install transformer T1

Transformer 1 is wound on the BN43-202 binocular ferrite former, using the thick 0.6mm (AWG 
#22) wire. This wire is also used for L14 so do not use all of it on the transformer.

The transformer has two windings, both 3 turns (3:2 if building for 12V supply). The three-turn 
primary winding has a center-tap. In the nomenclature of binocular cored transformers, “1 turn” 
means the wire passes through both sets of holes, ending up back at the end where it started. 

Assembly of this transformer is best done in steps as follows. Please read all the steps before 
commencing the assembly:

Step 1: Carefully unwrap the thick 0.6mm (AWG #22) wire, and straighten it ensuring there are no 
kinks. 

Step 2: Pass the wire through both holes, starting at the top left, as shown. This is the first turn of 
the 3-turn primary winding. 

Step 3: Now pass the wire through the top hole of the binocular core, back from left to right. This is
the next half-turn of the primary winding, bringing the number of turns so far to 1.5; now we must 
make the center tap. 
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Step 4: Now pass the wire back through the bottom hole of the binocular core, from right to left; 
but do not pull it tight. Leave a small loop as shown in the photograph. This will be soldered into 
the center-tap pad on the PCB. 

Step 5: Wind the wire through both the top hole of the binocular core and the bottom hole, pulling 
it a little tight as normal; this forms the final turn of the 3-turn primary winding. You end up with the 
wire coming out of the bottom left hole as shown; cut it to about 1cm protrusion. 

Step 6: Squeeze together the center-tap to try to avoid subsequent confusion. 

Step 7: Start the 3-turn secondary winding by pushing the wire from right to left through the bottom
hole of the binocular core, then from left to right through the top hole. This is the first turn. 

Step 8: Push the wires through both holes two
more times to create the second turn: right to left
through the bottom hole, then left to right through
the top hole. Now we have three turns on the
secondary. Cut the wire leaving about 1cm spare.

Remember to wind only 2 turns secondary, if
winding the transformer as 3:2 for 12V
operation. 

Please refer to page 4 for details of 9V or 12V
operation choices. 
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Step 9: Bend all the wires to point downward in
the position they will need to be, to fit through the
holes in the PCB. 

Step 10: Now cut the center-tap loop; hopefully,
as mine are in this photograph, these two wires
formed by cutting the loop are LONGER than the
two ends of the 3-turn secondary, so that you
cannot mix anything up. 

Step 11: Insert the wires into the holes on the
PCB. The two wires (of the cut loop) that belong
to the center-tap of the 3-turn primary, which are
the longer wires, are inserted into the middle hole
on the right-hand side; this hole is larger than the others and is big enough for both wires to fit in. 

Step 12: Now we need to get the enamel off the wire. Usually on thinner wire, I hold the soldering 
iron to the wire until the enamel burns off. But that doesn’t work so well on thicker wire such as 
this. So my technique here is to scrape the enamel off, at least partially, using wire cutters. The 
correct pressure needs to be applied to the wire cutters, so as NOT to actually cut the wire. I hold 
the wire cutter as close to the PCB as possible, then gently but firmly pull the cutter away from the 
PCB, scratching off the enamel. Turn the cutter to a different angle and scrape again, 2 or 3 times.
It is not necessary to remove ALL the enamel, if you get a few good scrapes on, enough enamel 
will be removed that the soldering iron heat will burn off the rest of the enamel and a good joint will
be achieved. Do this for the 4 winding ends first, leave the two center-tap for later, to make it 
easier. 

Step 13: Cut each of the four wire-endings, leaving about 2mm or less, sticking up from the PCB. 

QDX assembly Rev 1.06 19



Step 14: Solder the four wire endings. At each pad, hold the soldering iron firmly, apply plenty of 
solder, and wait for about 10 seconds. This will ensure a good connection, and any remaining 
enamel will be burned away. 

Step 15: Finally repeat the procedure with the two center-tap wires that came through the large 
center hole. Scrape them, cut them to 2mm, and solder them. Apply plenty of solder and hold the 
soldering iron tip to the joint for maybe 15 seconds, to really be sure of a good joint and burning 
away any remaining enamel. 

Step 16: Check that none of the wires protrude more than 2mm from the surface of the PCB, since
if you are using the optional aluminium enclosure, there are only a few mm clearance. 

Step 17: Verify good connections for all five soldered joints of T1 using a DMM set to resistance or
continuity mode. My cheap DMM hasn’t got a continuity mode and I’m using the 2000-ohm 
resistance mode; in this mode when there is continuity, the reading on mine shows 001 (not zero-
ohms; this is just a DMM thing, of no significance). 
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You should see continuity between all the points labeled A in the photo below. Touch the probes 
to pairs of these points, to verify continuity. 

You should see continuity between the points labeled B also. Touch the two probes to the two 
pads labeled B and check for continuity. 

Finally, there should be NO connection between A and B. Hold one probe on any A point and the 
other probe on a B point. That should read infinite resistance (no continuity). 

If any of these tests fail, then you have a soldering problem somewhere, or the wrong wire in the 
wrong hole, or some short-circuit somewhere etc. 

This is the final appearance of T1 when the installation is complete:
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2.9 Prepare and install tapped inductor L12

L12 is an inductor wound on a T50-2 toroid (red colour, large size), having several taps which are 
switched in according to the operating frequency (band). There are 41 turns in total, with taps at 
19, 30 and 36 turns. The diagram shows the location of the taps at 19, 30 and 36 turns, which 
have larger holes, such that two wires can be inserted. 

Carefully unwind and cut off 75cm of the 0.33mm (AWG #28) enameled wire, and straighten it, 
ensuring no kinks. 

Step 1: Begin winding L12 as shown. Remember that in the nomenclature of toroidal inductors, 
each time the wire passes through the center of the toroid counts as 1 turn.  

Step 2: Wind 19 turns then make a loop between the 19th and 20th turns. This is for the 19 turn tap.
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Step 3: Wind up to the 30th turn then make another loop between the 30th and 31st turns. This is for
the 30 turn tap. 

Step 4: Wind up to the 36th turn then make another loop between the 36th and 37th turns. This is for
the 36-turn tap. 

Step 5: Wind the remaining turns to complete the total of 41 turns. 

Step 6: Now with a pair of pliers, you can squeeze each of the loops into a sharp
point, such that it is easy to fit through the large holes at the 19, 30 and 36-turn
taps (see photo, right). 

Step 7: Insert all the wires in
their correct holes. 

You should pull them firmly from
the underside of the board to
ensure that there are no loose
wires on the top side. 

Now cut each wire to about 2mm
length (at most) and solder in
place. It is essential to remove
the enamel from the wire. My
favourite method of doing this is
simply to hold the soldering iron
to the joint, with plenty of solder,
for at least 10 seconds. The
enamel burns away in this time. 
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Step 8: Verify the joints are properly soldered, by using a DMM in continuity testing mode (if it has 
this mode) or check for zero ohms in resistance mode. On the reverse of the PCB, check for 
continuity between pins 3, 4, 5, 6 and 9 of IC3 as shown. You should measure 0 ohms (continuity) 
between any pairs of these. If you do not, then there is a mistake somewhere, most probably a 
failure to burn away the enamel at one or more of the L12 connections to make a good joint. 

Here’s the story so far, including the nicely installed L12 tapped inductor. 
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2.10 Wind and install L14

L14 consists of 10 turns of 0.6mm (AWG
#22) wire wound on an FT37-43 toroid
(black colour). Firstly, you have to
understand that there’s a right way and a
wrong way to wind a toroidal inductor,
too. The terms “right” and “wrong” are
probably not as appropriate here, as
“handedness” or “winding direction”.
There are two directions you can wind
the toroid. If you choose the right one,
then all the wires will automatically end
up near the holes they are to be soldered
into. If you do it wrongly, it will be a bit
messy. 

For all the toroidal inductors in the QDX kit, you will get it right, if you start as shown (photo, above
right) and pass the wire through the toroid from the top side down through the hole, out and then 
around and over again; accumulating turns in the anticlockwise direction. 

With this in mind, wind 10 turns and install the toroid. As with the output transformer T1, I 
recommend scratching the enamel with a knife or wire-cutter, and then cutting it to about 2mm 
length on the underside of the board. Then solder, applying the soldering iron for at least 10 
seconds and plenty of solder, to ensure a good connection. Do NOT tin the wires before inserting 
into the holes: the holes are not large enough to accommodate tinned wires. 
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2.11 Install Low Pass Filter toroids

Now we’ll wind and install the six Low Pass Filter toroids using
0.33mm (AWG #28) enameled wire. Remember, as per the
previous direction, using the right winding direction will make
the toroids much easier to fit to the PCB. Refer to the table
below. Make sure to count carefully and install the toroids in
the correct places! Remember that each time the wire passes
through the center of the toroid counts as one turn. Spread the
turns evenly with a small gap.

Winding the toroids as tightly as possible will slightly improve
the performance of the Low Pass Filters. But don’t pull so
tightly that you break the wire!

The following table lists the required number of turns, cut wire
length, and inductance. 

Band Part number Core Inductance Number of turns Wire length

80m L2 T37-2 (RED) 2.40uH 24 36cm

80m L6 T37-2 (RED) 2.88uH 26 39cm

40m L3 T37-6 (YELLOW) 1.06uH 18 29cm

40m L8 T37-6 (YELLOW) 1.20uH 20 30cm

30m/20m L4 T37-6 (YELLOW) 393nH 11 20cm

30m/20m L10 T37-6 (YELLOW) 525nH 13 22cm
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2.12 Wind and install trifilar toroid T2

This toroid needs some care so please follow these instructions very carefully. 

Cut three lengths of 0.33mm (AWG #28) enameled wire, of length 20cm each. These three pieces 
now need to be tightly twisted together to make the trifilar wire. My method for this is to tie one end
in a knot around a small screwdriver shaft. Similarly tie the other end around another small 
screwdriver. Now clamp one end somehow to something solid. You could use a vise, if you have 
one. If you don’t, then you have to get creative and think of something. Here I taped it to the edge 
of the desk. Now you can twist the screwdriver at the free end, repeatedly until you twist the three 
wires together thoroughly. You need to keep the wire under a little tension to keep the twists 
evenly spaced. 

A 20cm length of
wire should have about 60 twists. It is not critical. 

The end result is something like the photo (right). The
measurement scale is in cm. 

Now cut off the untidy ends, and this is the piece of wire
that will be used to wind the FT37-43 toroidal core as a
trifilar transformer. 
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Hold the core between thumb and finger. Pass the wire first from above, to below. Then take the 
wire from below, and bring it around to pass through the toroid again to form the second turn. After
each turn, ensure the wire is fitting snugly around the toroidal core. Wind 10 turns on the core. 
Each time through the toroid’s central hole counts as one turn. Cut off the excess wire, leaving 
about 2.5cm remaining.

Now it’s necessary to identify which wire belongs to which winding. You have three windings 
twisted together, they all use the same wire. The only way to do this is with a DMM as continuity 
tester. First, untwist and straighten the wire ends that are not wound around the toroidal core.

Now tin the last few mm at the ends of each wire. You can do this by scraping off the enamel then 
tinning with the soldering iron; or, if your soldering iron is powerful enough, hold the wire end in a 
blob of molten solder for a few (maybe 10) seconds, until the enamel burns off.

Now use a DMM to test for
continuity. Re-arrange the wires
so that there is continuity from
A-A, B-B, and C-C in this photo.

Carefully keep this orientation of
wires and insert the transformer
this way into the PCB. BE
CAREFUL not to lose the
orientation of the wires! The
right wires must be in the right
holes, so that the windings are
connected correctly in the
circuit! 

Refer to the diagram on the following page to see the correct orientation. 

Once the wires are inserted through the correct holes in the PCB, and pulled tight, check for 
continuity between the pairs of wires in holes A, B and C once AGAIN. It is much easier to get this 
right first time, than it is to make repairs later!
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When you are satisfied that the wires are all in the correct holes, you can cut them to a length of 
about 2mm and solder them. It is best to cut-and-solder one wire at a time, since if you cut all the 
wires to 2mm length then the toroid is more likely to fall out before you’ve had a chance to solder 
any of the wires. If that happens, it will be tough to get all the wires back in the correct holes again.

There are numerous SMD components in the vicinity so be VERY careful when soldering the wires
of toroid T2, NOT to touch any
of the nearby SMD
components!

Once again my method
involves holding the iron and
plenty of solder on the joint for
at least 10 seconds to make
sure the enamel burns off
completely. 

The photograph (right) shows
the A B C-labeled holes on the
lower side of the PCB. You
should check for continuity
between the pairs of wires, IC3
pins 7 and 8; and IC4 pins 7
and 9. There should be no
continuity between IC4 pin 7
and IC3 pin 8 for example. 
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2.13 Install the 3mm red status LED

Identify the shorter of the two wires of the 3mm red LED and bend it 90-
degrees right at the body of the LED. 

Bend the other wire 90-degrees but at a distance of approximately 2.5mm
(0.1-inches) from the body of the LED (see photograph, right). 

Insert the LED leads into the holes in the PCB. As an additional check, the
LED will have a flat part on its body, which will sit flat on the surface of the
PCB. Solder the LED In place but be careful that it is accurately aligned in
position, protruding over the board edge at right-angles. This will ensure that
later if you are using the optional enclosure, the LED will fit without difficulty. 

Photo (right) shows the LED installed
correctly. 
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2.14 Install connectors

The final components to install are the connectors, from top right to bottom right:

• K1: USB B connector (NOTE: there is no R34, the empty pads for R34 are correct).

• X2: DC Power connector

• X1: BNC RF connectors

It is very important to install these carefully aligned so that they are straight and at right-angles 
with respect to the PCB. The connector body should not protrude beyond the edge of the PCB. 
When the connectors are well-aligned, you will have no trouble fitting the PCB into the optional 
enclosure. Clip off excess leads and tabs to make sure nothing protrudes more than 1.5mm.

Assembly of the QDX kit is
now almost complete!
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2.15 Install 220uF Power supply capacitor

As mentioned in the Design details section below, the QDX design uses the AMS1117 voltage 
regulators which were found to be rather weak in the QCX-mini design. The solution is to add a 
minimum 10uF capacitance at the DC input to the radio. It prevents rapid transitions that can 
destroy the AMS1117. 

Once this capacitor is added, QDX is safe. Since there are no connectors where hot-plugging 
could be an issue, the AMS1117 is not at further risk. 

A 220uF 16V electrolytic capacitor is supplied and it must be fitted at the DC input as shown 
below. The positive terminal of the DC input connector is the one at its rear (furthest from the 
board edge). A convenient ground point is the metal mounting tab of the USB connector which is 
grounded. 

The capacitor should be soldered on the top side of the PCB, between these two points exactly as 
shown. Make sure that the markings on the capacitor body indicating its negative terminal, are 
correctly orientated so that the capacitor negative terminal is connected to ground (the USB 
connector body). 
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2.16 Replace 47uH inductors

Unfortunately after manufacture, the 47uH SMD inductors used in the PCB assembly were found 
to have self-resonances in the HF region. Regrettably this causes leakage past the low pass filters
and degrades the attenuation of transmitter harmonics. 

To solve this problem, it is necessary to remove four 47uH SMD inductors and replace them with 
through-hole 47uH axial molded inductors (supplied). The inductors are L1, L9, L7, L5. These 
SMD inductors are easy to remove with a soldering iron, but be sure to correctly identify them first!
Removal is made easier by adding a small blob of solder to the iron tip.

The diagram on the following page shows the best place to connect the leaded through-hole axial 
47uH inductors. Do NOT try to connect the inductor leads to the tiny pads where the SMD 
inductors were installed – the pads are too delicate and will be ripped off too easily. Instead, solder
them to a through-hole pad or a lead of an existing through-hole component. 

In the following diagram, the blue lines indicate where the tracks are routed, on either side of each 
inductor. Connecting the through-hole inductors to anywhere on the blue lines will work. I suggest 
the following:

L1 replacement: from the bottom side of R1, to the bottom side of C2.
L9 replacement: from the top side of R9, to the pad shown.
L7 replacement: from the top side of R8, to the pad shown.
L5 replacement: from the top side of R7, to the pad shown.
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Make sure the replacement inductors are soldered to the correct parts of the circuit. Make sure the
component leads do not cause short circuits. And make sure the inductors are flat against the 
PCB so that there is sufficient space for them to fit in the clearance between the PCB and the 
enclosure bottom. 

The result is something like this:
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2.17 Optional enclosure

Installation of the QDX PCB in the optional enclosure is very straightforward and self-explanatory. 

1. Install the screws at the bottom left and bottom right of the front panel, fixing it to the bottom
half of the enclosure. Note that the enclosure top and bottom are identical. 

2. If the short edges (front and back, i.e. LED status edge, and connectors edge) of the PCB 
feel rough, it can be a good idea to gently file them so that the PCB edge is square. 

3. Gently slide the PCB into the guide-rail grooves in the enclosure bottom. 

4. Install the two screws at the bottom left and bottom right of the rear panel, fixing it to the 
bottom half of the enclosure. 

5. Fit the top half of the enclosure. Note that one side has an “I-tongue” and the other side has
a “U-groove” and this is repeated on both halves (top and bottom) of the enclosure. 
Therefore the top half will only fit the bottom half, “one-way-round”. If it does not appear to 
sit correctly, rotate the top half 180-degrees. Secure the top with the remaining screws. 

6. Finally you may, if you wish, fit the nut to the BNC connector. I generally leave off the 
washer. The nut may be omitted too, it is not really required and should in any event not be 
over-tightened since there is a small gap between the back surface of the rear panel, and 
the BNC connector body. If desired, attach the self-adhesive rubber feet to the bottom.
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3 Operating instructions

Operation of the QDX transceiver is really simple. There are only three connections:

1. DC Power: use a regulated well-
smoothed DC supply of not more
than 12V; it should be capable of up
to 1A current supply. The connector
is a 2.1mm barrel type (outside
diameter 5.5mm).

2. RF: a standard BNC connector to
your antenna system

3. USB: USB type B connector (a
standard USB type A to B cable is
required) for Audio and CAT control. 

Drivers

No additional drivers are required for operation with most Linux distributions, Apple Mac or MS 
Windows 10. 

For older versions of MS Windows, it may be necessary to install a driver for the serial port 
because this driver is not on your computer already by default. This driver is available from the ST 
Semiconductor website at https://www.st.com/en/development-tools/stsw-stm32102.html and is 
applicable to 98SE, 2000, XP, Vista®, 7, and 8.x Operating Systems. There is a description for 
installation on Windows 7/8 on the QRP Labs QLG2 page http://qrp-labs.com/qlg2 so if in doubt, 
please check this. 
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WSJT-X configuration

Next it is necessary to set up WSJT-X to communicate with QDX. We will use WSJT-X as the 
example, because it will be what most people are using. But other software will be identical (for 
example JS8Call) or similar. There are two parts to the set-up – firstly to choose the right USB 
Sound card, and secondly to set up the CAT communication so that WSJT-X can control the QDX 
via the serial comm port. 

Open the WSJT-X settings window (from the File menu) and select the Audio tab. Select “QRP 
Labs QDX Transceiver” as the input and output sound card. The below screenshot shows how it 
looks on my system, which is Linux (Xubuntu 18.04). It will look different on Windows, Mac and 
perhaps other Linux distros but the basic idea will be the same… you should see something in the 
drop-down which says something about QDX, and that’s the sound card to select. 
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Next click the “Radio” tab in the settings window, which sets up the CAT control communication. 

The following four settings need to be changed, and are illustrated in the diagram below:

• Rig will be set to None by default, click the drop down and choose “Kenwood TS-440” 
which should work well with QDX. On some other software, if you find that TS-440 is not 
present in the list or does not work properly, you could try “Kenwood TS-480”. More details 
about CAT and debugging any CAT problems are in another section of this manual, where 
the CAT test terminal screen is described.

• The Serial Port drop-down must be set to the correct port where QDX is connected. On my 
Linux system it is either “/dev/ttyACM0 or /dev/ttyACM1. On Windows systems it will be a 
COM port numbered COM1, COM2 etc. Unfortunately unlike the USB Sound, the serial port
name doesn’t contain the text “QDX”. If you are unsure which port to choose for QDX, the 
easy way to find this is as follows. Unplug QDX. Restart WSJT-X. Look in Settings -> Radio
and make a note of the list of serial devices. None of these are QDX (because you 
unplugged it). Now close WSJT-X, plug in QDX, start WSJT-X and again look in Settings -> 
Radio, and now you should see a newcomer in the list of available ports. The newcomer is 
QDX!

• Note that none of the Serial Port Parameters need to be changed, leave them all at their 
defaults. Even the baud rate 9600 is unimportant because it is irrelevant to the USB Virtual 
COM Port which is a virtual port over USB, not a real physical serial port. 

• Change the Poll Interval to 10 seconds, the default will be rather chatty with QDX which 
probably is not a problem, but anyway I feel more comfortable with the less frequent polling.
QDX has no capability to alter its operating frequency for example by itself, it can only do so
at the command of WSJT-X over CAT; therefore the polling is actually redundant anyway. 

• Change PTT Method from the default “VOX” to “CAT”. VOX means “voice operated 
exchange” or “voice activated transmission”; the radio will automatically switch to transmit, 
when incoming audio is detected. With PTT Method set to CAT, when WSJT-X wishes to 
start a transmission, it will send an actual CAT command to QDX informing it to start the 
transmission, before sending the audio. This CAT command causes QDX to switch from 
Receive mode to Transmit mode (and back again afterwards). “CAT” is preferable to “VOX” 
because if system sounds are accidentally routed to your “QDX” sound card as output, then
with VOX that will enable the QDX transmitter and try to transmit the sound. 

• Now click the “Test CAT” button and after a few seconds, it should turn Green to indicate 
successful communication with QDX. 
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NOTE 1: If you are using other software than WSJT-X or JS8Call, then QDX CAT commands 
should still work with this software. If you encounter difficulties then it is possible that your software
is trying to communicate with QDX using CAT commands that are not supported by QDX. In the 
section of this manual on the CAT Test utility (in the QDX Terminal applications), you will find a 
listing of the CAT commands supported by QDX. Another useful utility is the log file, which will let 
you record all CAT commands received and investigate any issues. If CAT commands are missing
for your application, QRP Labs can add support for them easily. 

NOTE 2: As mentioned above, CAT control of transmit/receive switching is recommended. If you 
INSIST on using VOX, QDX can support that. For example, you may be using a software 
application which does not support CAT control of transmit/receive switching and can only use 
VOX. In that case you should change the QDX transmit/receive switching mode from CAT to VOX 
in the QDX terminal Configuration utility, which is described in the terminal applications section of 
this manual. 

QDX assembly Rev 1.06 39



NOTE 3: The Data Bits, Stop Bits, Handshake should not need to be changed; however several 
users have reported that changing them to the settings shown in the orange box has resolved 
some issues with CAT reliability on Windows Operating Systems. 

WSJT-X “Pwr” Slider

The only other point to note is that WSJT-X should be operated with the power slider at the 
maximum setting. This point is discussed further in the QDX design section which explains that 
best accuracy in determining the audio tone frequency being sent by the PC, is when the Pwr is at 
the maximum setting. There is no point to using any setting other than maximum, because QDX 
only ever transmits at full power (5W), there is no way for it to transmit at a lower power output 
under command of WSJT-X. If you wanted a lower power output, you would need to use a lower 
supply voltage. Furthermore, QDX cannot be “over-driven” by too high volume, in the way that a 
SSB transceiver could. 

Therefore the “Maximum” setting for the Pwr slider is highly recommended, it is the optimum 
setting for QDX operation.
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QDX Status LED

The front panel of QDX contains a 3mm red Status LED. The operation of this LED is as follows:

• Quick flashing (flickering) for first 5 seconds after power up: if you disconnect power now, 
then next time you power up, QDX will be in firmware update mode. During this five 
seconds QDX is also operating normally in Receive mode. After five seconds, the LED will 
go to a steady on (lit) state.

• Slow flashing: QDX is in firmware update mode (refer to the Firmware Update procedure 
section of this manual). If you did not wish to be in firmware update mode and have entered
firmware update mode inadvertently, simply power down QDX and re-apply power; QDX 
will now be in normal operating mode again (quick flashing for the first five seconds, see 
above).

• Steady LED on state: QDX is in normal Receive mode operation

• LED flashes 3 times in quick succession, repeating every 1 second: QDX is in normal 
Transmit mode operation

Operate!

Once CAT is configured and working, and the QDX sound card is chosen, just operate WSJT-X as
you would normally! You can choose the desired band 80m, 40m, 30m or 20m from the WSJT-X 
screen and WSJT-X will communicate with QDX via CAT, to cause QDX to switch in the correct 
filters. 

This QDX manual is not the place to include tutorials on various digi mode operation or particular 
application software such as WSJT-X, such guides are readily available and written very much 
more thoroughly than I could hope to achieve!
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4 Design

4.1 Summary

Traditionally it was normally assumed that transmission of digital modes requires a computer, to 
generate the audio tones, and an SSB transceiver, to modulate those to RF and transmit them via 
an antenna. 

Yet – the widespread assumption that an SSB transceiver is REQUIRED is in fact absolutely 
incorrect, at least for a wide category of digital modes transmitting a single tone frequency shift 
keyed signal. This class of transmissions are NOT SSB, they are a single carrier, frequency 
modulated. Potentially this can provide simplification of the radio transceiver design, delivering 
both higher performance and lower cost. 

Why is this important? An SSB transmitter design is necessarily relatively complex and a non-
trivial undertaking for several reasons. The audio signal must be converted to RF by an SSB 
exciter. An exciter may commonly take the form of a superheterodyne architecture having a 
modulator, IF filter (crystals) and another mixer to convert to the final RF operating frequency. It 
then requires a linear amplification chain to raise the signal amplitude to the required power output
at the antenna port. An alternative architecture is a phasing network exciter which makes use of 
phasing techniques to null the unwanted sideband, and converts directly from baseband to RF. 
Again it is followed by a linear amplification chain. In both cases considerable attention to the 
design is required, to minimize the residual carrier frequency, and the unwanted sideband. 

Linearity must be maintained throughout the amplifier chain to the antenna port, to avoid 
splattering onto adjacent frequencies. Even though the audio signal is theoretically a single audio 
tone, harmonics of the audio tone may be present particularly if the audio level is too high, and the
carrier suppression and unwanted sideband are never perfect; so there is plenty of potential for 
generation of intermodulation products, hence the need for good linearity throughout. A linear 
amplifier (for example, Class AB) has low efficiency compared to non-linear amplifiers such as 
Class C. Low efficiency means higher current draw for a given power output (less battery-friendly 
in portable scenarios), and higher heat production, probably requiring heatsinking of the PA 
transistors – increasing size, cost and weight. 

Double Sideband (DSB) is even worse – the designs are simpler but here we have an equal 
amplitude unwanted sideband emission. Half the transmitter’s power is wasted on this unwanted 
sideband, which potentially can interfere with users of adjacent channels. On receive, we suffer a 
3dB degradation in noise floor at best, and at worst, interference from signals in the unwanted 
sideband. With the strong double tone (both sidebands) the potential for intermodulation products 
due to non-linearities in the amplification chain is higher. Except under optimal conditions, and 
even then with difficulty, two DSB transceivers cannot QSO with each other! A DSB transceiver 
can only QSO with an SSB transceiver at the other end. DSB is the only mode which cannot even 
communicate with itself! Some would say, an abomination of a mode. 

If there were a way to convert the audio tones from the computer, to RF, without going through the
SSB modulation process and linear amplification, it could solve many problems. 

Back in 2012 the QRP Labs Ultimate QRSS/WSPR/Digi transmitter kit was the first kit to generate 
and transmit digital signals standalone with no PC required, and without an SSB transmitter. It 
used just a microcontroller calculating the required frequency shifts and commanding an RF signal
generator – then the AD9850 Direct Digital Synthesis (DDS) chip – to produce the required 
frequencies. Several iterations of the kit evolved over the years, to the current Ultimate3S 
http://qrp-labs.com/ultimate3/u3s which can transmit quite a list of digital modes in the standalone 
beacon application. 
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However for QSO digital modes, using computer (PC) software to encode and decode the audio, 
SSB transceivers remained the norm. 

In the second half of 2019, I was thinking about FT8, and a number of simple low cost FT8 
transceiver kits that were available (DSB transceivers), none of which offered a particularly good 
performance. I realized that there IS a better way to do this, that will dramatically increase the 
performance without increasing the price. Straight away I designed QDX and built the prototype. 

The fact that the computer is generating the audio, does not need to stop us from generating a 
single RF tone from an RF signal generator, just as the Ultimate3S QRSS/WSPR/Digi kit does. A 
microcontroller can analyze the audio arriving from the PC, and determine the audio frequency of 
the tone; then add that to an RF base frequency (which on an SSB radio, we would call the “USB 
Dial Frequency”), to  determine the correct RF carrier frequency to generate for transmission. The 
rest is then a matter of commanding an RF generator to produce the calculated frequency, and 
amplifying it for presentation to the antenna. The generated signal is absolutely clean, having only 
harmonically related unwanted spurious emissions which can be taken care of in the conventional 
way by Low Pass Filtering. 

The importance of this technique cannot be understated. 

• We no longer need a complex SSB modulator involving multiple mixers, IF filters (or 
phasing in the case of the direct method).

• No more linear amplification chain – we can use higher efficiency non-linear amplifier 
classes, reducing the need for heatsinking, and lowering transmit current, very battery 
friendly.

• The unwanted sideband simply DOES NOT EXIST. It isn’t just “there but attenuated” 
depending on how well the transceiver was designed and aligned - it just isn’t there at all. 

• Similarly the carrier also does not exist. Carrier suppression in a modulator depends on 
how well the mixer is balanced and is never perfect. But here, we generate a single tone 
directly – and there’s NO SSB carrier at all. Zero.

• It is impossible to overdrive this design by turning up the audio volume too high on the PC. 
Therefore it is impossible to generate a messy signal that splatters on to adjacent 
frequencies. 

With this in mind, the rest of the QDX transceiver design falls into place, around this central 
concept. 
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4.2 Block Diagram

QDX consists of the following circuit blocks:

1. A synthesized Local Oscillator using the famous Si5351A Digital PLL signal generator chip. 
A 0.25ppm 25MHz TCXO is included as standard as the PLL reference. 

2. Low Pass Filtering to attenuate emissions at harmonics of the operating frequency. Filters 
are provided to cover 80, 40, 30 and 20m bands, and selected using solid state, PIN diode 
switching. 

3. A solid state transmit/receive switch – no bulky, noisy, expensive, unreliable relays here!

4. A switched receiver band pass filter to provide some degree of protection to the mixer 
against out of band signals. 

5. A high performance, double balanced Quadrature Sampling Detector to mix the incoming 
RF signals to baseband and produce I and Q signals.

6. A low noise pre-amplifier for the I and Q signals.

7. High performance 24-bit 48ksps (Kilo Samples Per Second) stereo Analog To Digital 
Converter (ADC) chip with 110dB of dynamic range.

8. An embedded Software Defined Radio (SDR) receiver which implements, digitally, a 12kHz 
Intermediate Frequency superheterodyne receiver with excellent performance and 
unwanted sideband suppression, also implementing a sharp digital filter. 

9. An embedded 24-bit 48ksps stereo USB Sound card – no more noisy, cluttered audio 
cables!

10.A CAT control serial interface, also over the same USB cable, to allow the PC software to 
control the radio (frequency, transmit/receive switching etc) in a standard way.

11.The microcontroller performs single cycle frequency analysis of the audio tone, and 
commands the Si5351A Signal generator to produce the necessary RF frequency. 
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12.A Class-D Push-Pull power amplifier that is small, low cost, high efficiency, and produces 
very low even harmonic output levels, reducing the demands on the Low Pass Filter. 

13.Voltage regulation and supply decoupling.

In subsequent sections, each of these blocks will be described in detail. 

4.3 Synthesized local oscillator

Generating a stable, precise oscillator signal was one of the most challenging aspects of 
transceiver design. Modern semiconductors however, make it one of the easiest building blocks of 
the radio. 

The synthesizer used in the QDX is the same as in the QCX 5W CW transceiver, and various 
other QRP Labs products: the Si5351A. This is a Digital Phase Locked Loop (PLL or DPLL) 
synthesizer which provides three separate frequency outputs, each having a frequency range 
spanning 3.5kHz to 200MHz. The frequency stability is governed by the a crystal reference. 

The block diagram (right) is taken from the
SiLabs Si5351A datasheet. Briefly, the 27MHz
reference oscillator is multiplied up to an internal
Voltage Controlled Oscillator in the range 600-
900MHz (the PLL), then divided down to
produce the final output frequency. The
multiplication up and the division down are both
fractional and so the frequency resolution is
extremely finely controlled. The chip has two
PLLs and three output divider units. 

For best jitter performance, the Si5351A datasheet recommends the use of even integer dividers 
(no fractional component) in the MultiSynth dividers and in the QDX transceiver design, this 
recommendation is followed. 

The synthesizer section of
the circuit diagram.

The Si5351A datasheet
dictates the use of a 25 or
27MHz crystal or oscillator. In
the QDX a 25MHz crystal
was originally used, together
with an unusual NPN/PNP
transistor oscillator circuit,
which produces a near rail-to-
rail (3.3V peak-peak) output
that is perfect for driving both
the Si5351A and the STM32
processor.

However during testing it was
found to provide an
unsatisfactory level of
frequency stability, which was
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very disappointing and boards had already been ordered. In the graph below, an example 
operating session is shown. QDX was operated on the 20m band and the operating frequency was
monitored as an audio tone on a separate receiver. 20m was used as it is the highest frequency of
operation of QDX and would therefore illustrate the worst-case scenario. The nominal operating 
frequency was 1kHz audio and was not altered during the test. 

In the graph, the red line is the audio frequency. The blue line is the output of the STM32’s internal
temperature sensor ADC input. It is uncalibrated (to temperature), and just indicates relative 
temperature changes. 

The QDX was switched on at 00:00 on the left side of the graph. An initial warm-up drift of 30Hz 
downward drift can be seen (red line). At around 12 minutes, FT8 operations were commenced, 
having the usual 15 second slots with alternating transmit and receive cycles, resulting in a duty 
cycle a little under 50% (FT8 transmissions are a bit less than the 15 second cycle). FT8 
operations ceased at around 47 minutes, by which time the enclosure had warmed up 
considerably and the frequency had dropped almost 90 Hz from power-on! As the unit cooled 
down, the frequency drifted back upwards again. The temperature curve (blue) gives a relative 
indication of the temperature of the PCB. 

FT8 has a bandwidth of about 50Hz. You can see that a 90Hz drift in half an hour of operation is 
rather unacceptable! Anybody who has tried FT8 operation will know that the band is usually full of
QSOs and you struggle to find a clear spot to transmit in, often slotted in with other stations closely
on either side. With such a bad drift rate, you would drift right across the other stations’ 
transmissions – or to avoid that, have to keep making little adjustments to the operating audio 
frequency in WSJT-X to counteract the drift! Horrible! 

The problem was resolved by designing a
neat little PCB containing a 25MHz TCXO
that is fit to the QDX during assembly,
INSTEAD of the 25MHz crystal. The tiny
PCB has three pads which line up precisely
with the crystal terminal that is connected to
the base of Q4, and to two pins at the board
edge which are used to supply Ground and
+3.3V. 
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The output amplitude of the TCXO is 1.1V peak-peak which is enough for the Si5351A, but 
insufficient to drive the STM32 oscillator input. It is therefore buffered using the original NPN/PNP 
transistor oscillator circuit, which results in a rail-to-rail (3.3V peak-peak) near-square wave. 

After fitting the TCXO in place of the original 25 MHz crystal, the drift is reduced to +/- 1Hz or so 
which is unnoticeable and entirely acceptable. 

The Si5351A has a large number of internal 8-bit registers to control the synthesizer configuration 
and output frequency, and these are programmed by the microcontroller using the I2C serial 
protocol. 1K resistors R20 and R21 are pull-ups required for the operation of the bus at 400kHz. 

There are three outputs of the Si5351A synthesizer and these are all used to good advantage. The
Clk0/1 outputs are used to drive the Quadrature Sampling Detector (QSD) during receive. 

A feature of the Quadrature Sampling Detector is that either the RF input, or the LO input, must 
provide two paths in 90-degree quadrature. This is normally applied at the Local Oscillator where it
can be easily controlled for best performance. So, two oscillator signals are required, with the 
same frequencies but a precise 90-degree phase offset. Generating this quadrature Local 
Oscillator signal is always difficult. Analogue phase shift circuits have limited accuracy. Often a 
divide-by-4 circuit is used, to produce quadrature oscillator outputs from an oscillator input at 4x 
the reception frequency. This also creates challenges particularly as you try to increase the 
reception frequency to cover higher bands. For example, on 10m e.g. 30MHz, a local oscillator at 
120MHz is required and the divide-by-4 circuit must be able to operate at such a high frequency. 
Devices such as the 74AC74 can do so, but pushing it higher into the 6m band cannot be done 
with the 74AC74. 

The Si5351A has a phase offset feature, which is not really very clearly described in the SiLabs 
documentation. However, QRP Labs has perfected the technique to put two of the Si5351A 
outputs into precise 90-degree quadrature, which is maintained without tuning glitches as the 
frequency is altered. It’s a nice development because it eliminates one more circuit block (the 
74AC74 divide-by-4 circuit), again reducing complexity and cost. To the best of my knowledge this
is the first time the Si5351A has been implemented in a product directly driving a QSD with two 
outputs in quadrature (no divide-by-4 circuit). 

The Clk0/1 Si5351A outputs are also routed to the transmit driver. During transmit, Clk0 and Clk1 
are configured with a 180-degree phase difference, this allows them to cleanly drive the QDX RF 
power amplifier, which is a Push-Pull configuration. It’s a very neat way to obtain the necessary 
push-pull driver signals in a highly symmetric and low parts-count way. 

Finally the Clk2 output is used as a separate signal generator, it is routed back to the QDX 
transceiver’s RF port via the 100K resistor R19. This signal generator can be used by the QDX 
diagnostic and self-performance measurement tools, to sweep the audio filter and sweep the RF 
bandpass input filter. Clk2 is normally switched off, and when these functions are needed, it is 
enabled in conjunction with Clk0/Clk1 operating the receiver mixer. 

An additional function of the 25MHz TCXO and its NPN/PNP transistor buffer amplifier, is to 
provide the precise 25MHz system clock for the STM32. The STM32 microcontroller contains its 
own internal PLL clock generation systems that are highly configurable. In QDX, the 25MHz 
reference oscillator is fed to the STM32 external clock input, and the STM32 is configured to 
provide:

• 24.576 MHz clock for the 512 fs input to the 24-bit stereo I2S ADC chip (24.576 / 512 = 
48,000) – fs is the number of clock pulses for each analog to digital conversion. 
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• 48 MHz clock for the STM32’s USB peripheral to enable it to provide USB functionality for 
the USB sound card and the CAT Virtual COM serial port.

• 72 MHz for the main CPU clock

None of these signals are absolutely precise but they are very close to the target values and well 
within specified allowable errors for the protocols involved (USB, I2S). The 72 MHz CPU clock is a
little below the maximum allowable 84 MHz for this processor, but this is acceptable since the 
performance at 72 MHz is plenty adequate to achieve all desired functionality for QDX. 

4.4 Solid state transmit/receive switch

During transmit, the receiver must be
disconnected from the RF port of QDX
because a 5W signal is 45V peak-peak which
would be too much for the receiver input
mixer IC3. 

A spectacularly high “Off” isolation is not
required, only sufficient attenuation to protect
the mixer. During transmit, the Digital Signal
Processing of the I & Q channels is
suspended and there is no audio output of
the receiver. In the QDX application a totally
clean click-free transition between Receiver
and Transmit states is not needed – a
welcome relaxation compared to the
demands of a CW transceiver. 

The transmit/receive switch is implemented
by a single BSS123 MOSFET. The source is
at DC ground (via 47 uH inductor L4). The
control signal from the microcontroller
switches the MOSFET on or off. Capacitor
C35 close to the MOSFET gate is found to be necessary to prevent inductive pickup of the 5W RF 
from partially switching on the MOSFET. 

An interesting additional detail here is that the microcontroller output can only drive the MOSFET 
gate to around 3.3V as this is the supply rail of the microcontroller. When “On” the processor 
output pin is put into a high impedance state and the 5V via R14 switches on the MOSFET. When 
“Off”, the processor output pin is in a low impedance state and pulls the gate to near 0V. Given the
much lower VGS (Gate Threshold Voltage) of the BSS123 compared to the BS170 used in 
through-hole designs this 5V “on” potential may not be needed in this application. 

During receive, the transmitter drivers are all at zero potential, so the transmitter power amplifier 
transistors are in a high impedance state and do not affect the receive operation. 

This simple transmit/receive switch very conveniently avoids the need for relays. Relays may be 
great for some applications but if a relay was used here for transmit/receive switching it would add 
bulk, weight, cost, and reduce reliability. 
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4.5 Switched receiver band pass filter

In any receiver, performance is improved by excluding strong out of band signals using a band 
pass filter. In QDX a rather simple series resonant L-C filter is used, which although limited, still 
provides some useful protection to the mixer. The mixer is a Quadrature Sampling Detector which 
is a high dynamic range, high IP3 mixer and therefore has excellent intermodulation performance. 
Together, the BPF and QSD provide a high performance receiver front end. 

The band selection switch is a FST3253 dual 1:4 analog multiplexer IC, containing in other words, 
two 4-way switches. 

The switch connects one of Y0 to Y3, to
the W pin; and at the same time one of
X0 – X3 to the Z pin. The selection of
which of the four possibilities is
connected, is made by two control lines
named A and B (pins 14 and 2
respectively) which are connected to
output pins of the STM32
microcontroller. 

The Y-W switch connects one of
capacitors C29, C31, C28 and C30 (for
20, 30, 40 and 80m respectively) to pin 9
(W). 

The second switch X-Z then selects one
of four taps of inductor L12. 

Inductor L and capacitor C values are
chosen such that the LC resonance is
centered on the digi modes section of
each band. 

More sophisticated Band Pass Filters
could be used but would come at the expense of complexity, board area, and cost. 
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4.6 Double-balanced Quadrature Sampling Detector

This circuit implements a double-balanced Quadrature Sampling Detector, mixing from RF to 
baseband. The FST3253 is a dual 1:4 multiplexer which is often seen in QSD circuits. It has fast 
switching times and very low on resistance of only a few ohms. The input signal is switched by the 
quadrature LO to each of the four integrating capacitors C39, C40, C41 and C43 in turn, for 90-
degrees of the RF cycle each. The result is that the audio difference (beat) between the RF input 
and LO input appears across each of the four integrating capacitors, with four phases at 0, 90, 180
and 270 degrees. 

The 0.1uF capacitors and the low source resistance results also provide a relatively fast roll-off of 
the audio response. This is effectively a narrow band pass filter since any incoming RF more than 
a few 10’s of kHz away from the LO frequency is greatly attenuated. The QSD is inherently a very 
high performance mixer design with high third order intercept and dynamic range, and low loss 
(0.9dB). 

The FST3253 dual switch is often connected with the two switches simply paralleled together 
(which does halve the switch ON resistance). But I prefer the double-balanced mixer configuration 
which provides higher performance. The double-balanced configuration requires two RF inputs 
180-degrees out of phase (opposite to each other). This is provided here by trifilar-wound 
transformer T2. 

R17, R18 and C38 provide a 2.5V DC bias to the RF signal through the mixer and audio pre-
amplifiers. This simple bias does not source or sink any significant current due to the balanced 
nature of the system, therefore no buffering is required. 
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4.7 Low noise pre-amplifiers

The same LM4562 dual operational amplifier
chip is used in QDX as is used in the QCX-
series CW transceivers and QRP Labs receiver
module. This is a low noise op-amp providing an
excellent combination of high performance and
low cost. 

Low noise is important for the pre-amplifier
because it determines the overall sensitivity of
the receiver (in conjunction with losses of the RF
front end). 

The amplifiers are used in a difference
configuration to provide common mode
rejection. The 0 and 180 degree signals are
summed to produce the I-channel, with 90 and
270 degree QSD outputs producing the Q-
channel. 

The I and Q channel contain all necessary
phase and amplitude information to allow the
following SDR to demodulate any mode,
although only single sideband  is used in QDX. 

4.8 Analog to Digital Converter

The AK5386 Analog to Digital
Converter (ADC) chip is a high
performance stereo ADC chip. Its
purpose is to convert the analog I
and Q-channel signals to a digital
representation to allow digital
signal processing by the
microcontroller, which implements
a Software Defined Radio (SDR).
The AK5386 specifies a 110dB
dynamic range and is used at 48
ksps (kilo samples per second). 

Particular care is required in the
PCB layout to achieve the
specified dynamic range, with
separate ground planes for the
analog and digital sections. The
zero-ohm resistor R30 is the single point interface between the two grounds. 

In this design, the AK5386 chip acts as Master of the I2S interface and the STM32 I2S peripheral 
acts as Slave. The STM32 generates a 24.576 MHz clock signal (I2S_MCLK) which is 512 x the 
sample rate (i.e. 48,000 x 512 = 24,576,000). From this, the AK5386 generates the bit clock 
(I2S_SCLK) at 3.072 MHz (64 bits per sample – two 32-bit fields, for Left and Right channels, of 
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which 24-bits are populated). The processor also generates the Frame clock (LRCK) at 48 kHz. 
The I2S_RESET signal is supplied by the microcontroller and must be activated once at power-up 
to reset the ADC. 

4.9 Embedded Software Defined Radio

This schematic fragment contains the whole microcontroller section around the STM32F401RB 
microcontroller. 

The microcontroller section of the schematic includes a 24C64 (8K x 8-bit) serial I2C EEPROM 
chip. Unlike the ATmega328 processors used in many other QRP Labs kits, the STM32 used here
does not contain internal EEPROM so for storage of configuration parameters it is necessary to 
either use Flash storage or EEPROM. The problem with Flash storage is a limited 10,000 write-
cycle specification which may be a little low. Therefore an external EEPROM chip is used. 
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The 4-pin programming header at the bottom right of the diagram is for factory use only to install 
the QFU bootloader on the QDX board. An onboard diagnostic LED is also used only for factory 
validation. LED1 is a front panel LED on the QDX which shows basic status information such as 
whether or not the unit is transmitting or receiving, or in bootloader (firmware update) mode. A 
transmit-enable output switches on the transmit driver to enable the RF power amplifier. 

Other than that, all the magic goes on in the firmware, which is not open source. 

The Software Defined Radio receiver (SDR) implements digitally a superhet receiver having a 
12kHz Intermediate Frequency. The reason for doing this rather than processing directly at 
baseband as a direct conversion receiver, is that it eliminates any issues with power line hum – 
the harmonics of 50Hz or 60Hz (depending on your country) and other noise which exists around 
0Hz.

The receive signal path processing contains the following stages implemented in the Digital Signal
Processing (DSP):

• Retrieve a block of 32 24-bit audio I and Q samples from the ADC chip via the I2S bus

• “Mix” to 12 kHz Intermediate frequency, including a Low Pass Filter in the factor-of-four 
decimation process; the reason for the choice of 12 kHz as the intermediate frequency is 
that the mathematics becomes relatively easy, as it is exactly one quarter of the 48 kHz 
sample rate. 

• A Hilbert Transform applies a 90-degree phase shift to one of the I and Q paths relative to 
the other; this is the equivalent of the analog all-pass phase shift network implemented 
using op-amps in the QCX CW transceiver. 

• Sum or subtract the two paths to produce either the Upper or Lower sideband; QDX is 
capable of demodulating either sideband but digital operations normally use upper side 
band (USB) which is therefore the default operating mode. 

• Apply a digital audio filter, which has a passband from 150Hz to 3.2kHz

• Interpolate back to 48 ksps audio

• Send the 48ksps audio samples to the PC over the USB Digital Audio link. 

The performance of the receiver was tested using the internal signal generator to inject a signal 
into the QDX input at a defined offset; Argo software was used on the PC to determine the 
received signal amplitude. 

Two different measurement runs were performed, with quite some elapsed time between them (17
months!). In both cases, there is no change to the firmware but the measurements were performed
on different prototypes. There is no attempt at amplitude or phase compensation, which does not 
appear to be needed (the results are already excellent). 

The vertical scale in dB has an arbitrary zero reference; the important point is the difference 
between the upper sideband (blue line), and the unwanted lower sideband (red line). 
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In the first example (shown below) dating from 06-Apr-2020, the worst case unwanted sideband 
suppression is at -64dB relative to the wanted sideband, which occurs at about 2,200Hz audio. 

The second measurement (September 2021) shown below, shows a worst case unwanted 
sideband -60dB relative to the wanted sideband, again at about 2200Hz audio. The difference of 
4dB between the two prototypes will have been due to component tolerances and build-style 
variations. In both cases, this is really good performance!

The second measurement was painstakingly made with much finer resolution (lower frequency 
steps) than the earlier measurement, which shows more clearly the behaviour of the Digital Signal 
Processing. 
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4.10 Embedded 24-bit 48ksps stereo USB Sound card

QDX has its own embedded 24-bit 48ksps stereo USB sound card! But there is not a real physical 
little piece of hardware strapped inside, like the PCB from a sound card dongle or something. 
Instead, the USB sound card is actually coded in firmware directly by the STM32 microcontroller, 
the same single microcontroller that is also doing everything else, in the design. 

This is an extremely important design feature of QDX. 

A radio transceiver having an audio input has a number of disadvantages:

• An audio cable is one more cable to have to plug in between your radio and your PC. 

• There may be level mis-matches between the PC generating the audio signal, and the 
audio input of the radio. The PC will need to be carefully set up to set the volume such that 
the radio produces the expected RF proper power level, but does so without distortion 
(clipping, intermodulation distortion, splatter, however you want to refer to it). With the built-
in QDX sound card, no level adjustment is necessary; set the volume to the max and rest 
assured that the QDX will never be overdriven (in fact it CANNOT be). 

• Audio cables are a recipe for picking up noise, particularly in most of our lab environments 
where we power our equipment from grid power. You will often see 60 Hz (US) or 50 Hz 
(most of the world ex-US) harmonic lines on spectrum waterfalls. Ground loops can be hard
to eliminate. With QDX and its built-in sound card, numeric audio sample data is transferred
back and forth between the PC and QDX with zero loss, zero distortion, no hum or other 
noise. The quantization error due to sampling at 48ksps is minimal but is in any case 
matched by WSJT-X so a higher sample rate would not achieve an increase in 
performance. The benefit of direct digital numeric transfer between PC and QDX, without 
any conversion errors or noise, is enormous! 

You can buy cheap USB dongles and connect them between your radio and your PC. But the 
dynamic range IS limited, and not just by the 6dB/bit theoretical relationship between bit depth and
dynamic range, but also by the actual noise floor of the converter (the least significant bits are in 
other words, just noise). 

In contrast, QDX uses a 24-bit stereo ADC chip with 110dB dynamic range specification. If you 
look at the specification of any expensive USB external sound card, and the price of getting 
anything like 110dB, you will appreciate the true significance of this. 

All Digital Signal Processing in QDX is carried out at full floating point resolution, not limited to 16-
bits as many SDR implementations do. In its communication with the PC this is rounded to 24-bits 
and transferred via the USB Digital Audio device class. WSJT-X only uses 16-bits so the PC 
sound system will automatically re-sample but still, the 24-bit USB sound is sent by QDX to 
support any future PC applications which use a higher resolution. 

The result is a very high performance radio receiver, and equally, an excellent performance 
transmit side due to the zero-loss, zero-noise transfer of audio digitally from the WSJT-X synthesis
straight to the QDX frequency analysis. 
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4.11 CAT control serial interface

QDX includes an emulated virtual COM (serial) port, all in the same STM32 processor that does 
everything else. The STM32 processor therefore actually includes THREE USB device classes: 

1. Compound device class (a container for more than one other device classes)

2. Digital audio 

3. Virtual COM (serial) port

The introduction of the compound device class makes QDX effectively, contain a virtual USB hub, 
to which is connected a Digital Audio USB device (the USB sound card) and a Virtual COM Serial 
Port. This allows a single USB cable to be used between QDX and the PC, the USB cable 
transfers both digital audio and serial data seamlessly between the two. 

An important benefit of the CAT control interface is that it allows QDX to have a flexible tunable 
VFO and band switching, all without any actual physical controls. No physical controls are at all 
necessary because everything is done under the control of the WSJT-X software as CAT 
controller. Elimination of display and physical controls is not just a matter of lowering costs, it also 
makes the QDX extremely easy to use. Want to change bands? Simply click the drop-down in 
WSJT-X and QDX will automatically change bands. Want to use a different frequency (for 
example, change mode to WSPR, or perhaps even change software application to JS8Call)? The 
software application will automatically switch you to the correct frequency for the mode you select. 

Another advantage of CAT control is that WSJT-X contains an option to effect the transmit/receive 
switch either by VOX (Voice activation, or in other words, the presence of audio) or by an actual 
CAT command to enable transmission. QDX also supports both methods, there is an entry in the 
configuration screen that allows VOX to be enabled or disabled. The default setting is “disabled”, 
which means a CAT command is necessary to switch from Receive to Transmit (and back). 

The danger of VOX is that it is all too easy to accidentally have the QDX selected as the sound 
card for system noise outputs etc… then when a WhatsApp message from someone arrives, and 
the PC does its fancy “pling” sound, well that’ll be faithfully converted to a series of audio tones by 
QDX and transmitted accordingly. So disabling VOX and insisting on a proper CAT command to 
switch on to transmit, is the recommended modus operandi. 

QDX also has a rich user interface via the Virtual COM port, by connecting a terminal emulator on 
a PC, to the virtual COM port. This is a whole blissful and enormous topic by itself, it allows 
interaction with all the built-in analysis tools in QDX as well as the configuration screen and 
features such as factory reset and firmware update. 

4.12 Audio frequency analysis

Determination of the audio frequency arriving from the PC software (for example, WSJT-X) is key 
to the whole operation. 

My first thought was a Fast Fourier Transform (FFT). However that quickly turns out to be a lot 
more difficult than it at first sounds. For the FT8 mode for example, the audio range is a 3kHz 
band. It isn’t so trivial to set up a FFT with 6.25Hz buckets, that wide, and would require a 
significant amount of processing power, such that I would need to use a more powerful (and 
expensive!) microcontroller than I’d really like. Furthermore WSJT-X modes are heavily optimized 
such that the period is the inverse of the tone spacing, so I might need to do TWO interleaved FFT
analysis runs offset by half the tone spacing. Then there’s the problem of the frequency slide when
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a tone changes. Furthermore, the QDX would have to know which mode was being transmitted, in 
order to configure the size (and hence speed) of the FFT buckets. I started to shudder and shake! 

I soon realized that FFT would be the sledge hammer approach and there is a much simpler and 
faster way, which also offers higher accuracy. 

The simple approach is to detect the zero crossings of the sinewave, and carefully time the period 
between zero crossings. Frequency is the reciprocal of Period, so once you have the period, a 
moment later you know the frequency too, and the problem is solved. It turned out to be very easy 
to implement this method, and the accuracy is rather impressive. Experimentally, a SINGLE 
CYCLE measurement of the frequency at 1500Hz audio frequency leads to frequency accuracy of 
around +/- 0.05 Hz. More than enough! 

NOTE: 1500Hz is an unfair frequency to measure at, because each cycle fits into an exact number
of audio samples; 32 audio samples at 48,000 cycles per second make up one 1500Hz audio 
cycle. This sets us up for an extremely low error cycle measurement. So to make things fair, I 
actually offset the frequency for the test, to around 1520 Hz, so that the cycle doesn’t contain an 
exact number of samples.

In actual fact we don’t really need to update the frequency of the Si5351A Synth 1500 times per 
second… that’s excessive. QDX has configuration options that allow you to specify an averaging 
period, where a specified number of sound samples AND a specified number of audio cycles must
both be exceeded, in order to terminate the audio cycle measurement. The default parameters are
set for a minimum of one cycle, but a minimum of 480 samples. 480 samples is 0.01 seconds and 
since we never go as low as 100Hz, the dominant criteria is therefore a measurement of at least 
0.01 seconds. 

With this default configuration, we get 100 audio frequency measurements per second, and 
experimentally the frequency accuracy is better than +/- 0.002 Hz. Amazing. 

As for the details of the analysis, study the following hypothetical sinewave:

Remember that we have a built-in 24-bit 48ksps stereo USB sound card. Accordingly we get 
48,000 samples per second. In this example I am assuming WSJT-X is used; WSJT-X outputs 16-
bit samples, so the extent of the sinewave data is from -32,768 to + 32,767. The sound samples 
are received from the PC via the USB cable and are absolutely FREE of any noise. It’s a lossless 
and zero noise transfer between the WSJT-X software on the PC, and the QDX’s firmware. The 
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sequence of sample numbers received are EXACTLY what the WSJT-X software generates in its 
audio software-DDS. 

We also know that the sound samples arrive at exact equal intervals of one 48-thousandth of a 
second. This is effectively the time base of our period measurement. It is not necessary to run any 
kind of actual timer inside the microcontroller, because in this instance we already have the luxury 
of knowing we get exactly 48,000 samples per second from the PC. 

In the graph, the sine wave is shown starting at sample 0, with amplitude zero. In general, except 
in special cases (such as 1500Hz as mentioned above), we won’t have a subsequent zero 
crossing indicated by a sample with value zero. We will have a sample ABOVE zero, followed by a
subsequent sample BELOW zero. It is easy to detect this situation in the firmware code, just by 
looking for two successive samples, the first one being positive and the second one negative.

In QDX the firmware detects positive-to-negative zero crossings but it could equally well be done 
on negative-to-positive zero crossings, it is of no importance. It would even be possible to 
measure the frequency of half-cycles, with half the accuracy. But this kind of extremism doesn’t 
seem warranted, unless in future some kind of mode with very fast measurements is needed or 
perhaps, we need to quickly measure the frequency of very low frequency audio signals. 

Once we have a positive value followed by a negative value, and we know that they are 1/48000th
of a second apart, we now want to find the exact time of the zero-crossing itself. This is also quite 
easy with a straight-line (linear) approximation. For small angles (in radians) the well known 
approximation holds: x = sin(x). 

The period of the measurement is then given by the fractional times calculated by interpolation, at 
the start and end of the sample, plus the number of complete sound samples that occur 
BETWEEN the zero crossings. This is a “number of samples”, and we know that there are 48,000 
samples per second, so now it is easy to calculate the time in actual seconds which is the Period 
of the audio cycle; then the frequency is 1/Period, and we’re done. 

An example

To give a worked example, consider again the above simulated sinewave samples (generated in a
spreadsheet). For ease of viewing, there are not many samples per cycle, in other words, this is a 
much higher frequency than we will be dealing with in practice; but it serves to make the principles
relatively easy to understand. 

We see audio sample #5, which happens to have a value of +8481 (according to the 
spreadsheet). Now the next sample, audio sample #6, has a value of -10126. We want to know 
the fractional interval (in samples), that is at the start of this sinewave cycle. I have called this time 
t1 in the diagram. Time t1 (as counted in samples), is a fraction 10126 / (8481 + 10126). This is a 
straightforward linear interpolation between the values at sample #5 and sample #6. The result 
calculates to be 0.544203794 samples. 

The next zero crossing occurs between sample #16 (value +6813) and sample #17 (value -
11743). Now we want to know the time t2, which is the fraction of a sample that occurs between 
the time of sample #16 and the zero crossing. I hope that you can see that this fraction is given by,
in this case, 6813 / (6813 + 11743) = 0.367158870. 

Next we can see that there are 10 complete sample periods in the cycle, between our two 
fractional pieces t1 and t2. The complete period, measured in audio samples, is therefore t1 + 10 
+ t2, which is 0.544203794 + 10 + 0.367158870 = 10.911362664. 
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By now, we have determined that our audio cycle being measured, has a period of 10.911362664 
audio samples. We also know that there are 48,000 samples per second. Therefore the Period of 
the cycle in seconds, is 10.911362664 / 48000 = 0.00022732. 

The frequency of the audio tone is therefore 1 / 0.00022732 = 4399.08 Hz. 

All without anything too complex, no complicated DSP, Fast Fourier Transform, etc. Love it! 

Error considerations

Now like any good scientist, we should consider the possible sources of error in this measurement
technique and try to understand if it is good enough for our purposes. 

Thinking about it, I could envisage three possible sources of error: audio amplitude error, timing 
error, and interpolation error (the straight line linear interpolation). Let’s consider each of these in 
turn. 

1) Audio amplitude error:

WSJT-X produces samples with 16-bit resolution. Other digimodes software may offer 24-bit 
resolution but I have not come across any popular modes or software that do this. Neither do I 
think there are any that provide BELOW 16-bit resolution. Since most users will use WJST-X, and 
other software anyway has similar facilities, I will use WSJT-X for the purposes of discussion. 

A 16-bit resolution provides 65,536 amplitude values per sinewave cycle. That’s a theoretical (and 
practically achieved, since we have the built-in USB soundcard and therefore a lossless, noiseless
transfer mechanism) 96dB dynamic range in the information transfer between WSJT-X and QDX, 
a very accurate transfer indeed. 

And yet – there are two scenarios where this can be dramatically reduced. 

The first scenario is where the operator uses the output amplitude slider at the bottom right of the 
WSJT-X screen, to something less than maximum. On a more traditional digital modes station 
involving a SSB transceiver, this would be done in order to avoid over-driving the SSB 
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transceiver’s audio input, causing splatter. There is NO POINT to doing this on the QDX, since the
QDX RF output simply cannot be overdriven. The QDX RF output simply is, it is the perfection of a
RF signal without any spurious residual carrier or attenuated unwanted sideband, without any 
audio harmonics due to over-driving and clipping.

But perhaps the operator wants to reduce the transmission output power, and uses the amplitude 
slider to do this? Again there is NO POINT, because QDX does not transmit at reduced output 
power. It’s all or nothing. There is no in-between. 

Therefore the operator should be advised for best accuracy, to leave the volume slider at the 
maximum value, as there is no point to any lower value choice anyway. I found I was able to move
the slider to very low volumes anyway before the frequency measurement accuracy significantly 
deteriorated. So this is not a particularly serious concern. But the recommendation still remains, 
just leave the slider at maximum. 

The second scenario where lower resolution sinewaves can be generated by WSJT-X, is during 
the key-down and key-up instants, where WSJT-X applies (I believe), a raised cosine amplitude 
envelope to the beginning and end of the transmission. For the sake of design simplicity and 
because it is much less critical in digital FSK modes, than on/off keyed modes such as CW, 
amplitude envelope shaping has been omitted from the QDX design. 

So there is no point to WSJT-X sending reduced amplitude sine waves at the beginning and end 
of the transmission key-down, since QDX cannot implement that anyway. Of course, WSJT-X 
does not know this, and there is no way to turn it off, so it will happen anyway. We can’t “advise” 
WSJT-X software in the same way as we could advise the operator to leave the slider at maximum
setting, in the previous discussed scenario. 

At very low amplitudes, there would be a much more significant quantization error due to the 
limited amplitude resolution, that has the potential to increase the frequency estimation error 
substantially at very low amplitudes such as when the raised cosine envelope shape starts. This 
could cause a frequency estimation with a significant amount of error, and the Si5351A 
Synthesizer to start producing RF at an incorrect frequency. 

To avoid this possibility completely, the QDX has a configuration (“Rise threshold”) which allows it 
to ignore any audio cycles until a certain percentage of full amplitude has been reached. This can 
be set to a high percentage value such as 80 or 90%. This will ensure that there is no initial 
frequency value with a high error. Transmission will not occur until the 80% threshold (for 
example) is reached. 

As a side-benefit, this will also FORCE the operator to keep the volume slider at the maximum 
value, or there will be no RF output! The “advice” will become binding. 

The threshold should not be set to a very high value such as 99% because at high frequencies, 
where the cycle is made up of a smaller number of sample values, there may be no sample value 
near the actual peak of the sinewave, and so it may take several cycles for perchance, a value to 
exceed the threshold. 

There is a similar “Fall threshold” setting to switch off the transmission at a defined amplitude 
threshold, before the raised cosine trailing edge of the amplitude envelope generated by WSJT-X 
takes the amplitude to a very small number and causes a potentially inaccurate frequency 
measurement. 

“Rise threshold” has a default value of 80% and “Fall threshold” has a default value of 60%; it is 
unlikely the operator would ever want or need to change these from the default values. The default
values are not critical but they should be neither very small, nor very large; and furthermore the 
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falling edge threshold should be somewhat smaller than the rising edge threshold, otherwise key-
up will be effected prematurely. 

When the operator uses the maximum volume setting, and thresholds are implemented to avoid 
the possibility of high calculation error at very low amplitudes which could occur during the raised 
cosine leading and trailing edges, the effects of amplitude error are practically speaking, of no 
consequence. 

2) Timing error:

USB audio devices transfer data to and from their PC host at an agreed rate. In the case of QDX, 
it appears to the PC as a 48ksps (48,000 samples per second) 24-bit stereo USB sound card. 
However, in common with all such USB audio systems, there is no facility for synchronization 
between the PC USB host, and the USB device. In other words, there is no 48kHz clock signal 
between the two. In the Full Speed USB protocol, the host and device communicate via data 
packets sent 1000 times every second. 

Now it can get all rather complicated… because the host may send data to the device at not 
exactly 48kHz, and the device may send data to the host at not exactly 48kHz either. There are 
specifications in the USB standards that define the worst allowable error percentage. Now both 
ends of the connection have to try to deal with the fact that there is ALWAYS going to be a 
difference between them. Even if both 48kHz crystals derive their sample rates from a quartz 
crystal reference, the crystals will not be at exactly the same frequency. 

In the case of QDX, there is a 25MHz TCXO that operates as the CPU clock input. All signals are 
derived from this clock, including the 72.something CPU clock, and the 48MHz USB peripheral 
clock (well, CLOSE enough to 48MHz), and the I2S peripheral master clock which is at 512 times 
the sample rate (each sample has 512 clocks); or 48kHz x 512 = 24.576 MHz. 

This 24.576 MHz signal is derived internally in the QDX, by a PLL multiplication factor of 117, then
division factors of 17 and 7. So 25 * 117 / (7 * 17) = 24.579832 MHz. Dividing by 512 gives an 
audio sample rate of 48007.5 samples per second! As well as this synthesis accuracy limitation 
there’s also the smaller imprecision in the 25MHz TCXO oscillation value. 

Luckily, this small 7.5 samples per second difference is well within the allowable percentage error 
in the USB sound device specification. On the PC side, the built-in USB driver has to deal with this
difference, in addition to the fact that its own master clock will also not be truly at precisely 48kHz; 
it does so, I believe, not by digitally re-sampling to what it thinks is exactly 48ksps, but by some 
kind of software phase lock mechanism. 

On the incoming data from the PC over the USB interface, we’re also not going to be getting data 
samples at exactly what WE believe is 48ksps (our belief also being slightly inaccurate, itself). So 
what do we do… certainly I’m not going to dabble in software PLL clock recovery; an option could 
be do occasionally drop a sample if there are too many, or to duplicate a sample from time to time 
when there are, in my judgement, too few. 

But in the end, after all this waffle, none of it is necessary. It is perfectly acceptable to do 
NOTHING about the lack of synchronization, just nothing at all! It is fine to pretend that we get 
exactly 48,000 samples per second, and analyze them all perfectly as though everything was 
exact. If there is any sample rate error, it will simply produce in the calculation result, a 
proportionate error in calculated frequency. Even a 1Hz error, if it happened (and frankly, I have 
never seen even a 0.01Hz error), would be of no consequence to operation of the transceiver, 
alongside much more significant errors such as the precision of the RF synthesis. 
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In the end therefore, the conclusion is that timing errors are of no consequence. 

3) Interpolation error

Remember the approximation we have used for the zero-crossing interpolation that determines the
exact moment of the zero-crossing event? Mathematically, the approximation is that for small 
values of x, then sin(x) equals x. Put another, less mathematical way, we can draw a straight line 
between the two points we want to interpolate, which makes the calculation easy. 

What can cause this to generate error? Well, when we are no longer dealing with “small values of 
x”. Practically speaking in our case, this occurs when there are a lower number of samples per 
audio cycle. 

Consider an extreme example, for the sake of demonstration – here is a an 8.4kHz sinewave 
(much higher than we will ever be dealing with):

You can see that the sample points, indicated by the X’s, are quite far apart. The zero-crossing 
time, or the time between the two samples adjacent to the zero-crossing, is a relatively large 
fraction of the cycle period. Our “x” is therefore not so small as it was before. The straight lines 
that previously didn’t look at all bad, now look a lot less like the sinewaves that are being 
approximated. 

Now consider this sinewave which happens to be about 1.27 kHz:
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Obviously it LOOKS a lot better but we can also see that using straight lines at the zero crossing, 
will be a very much better approximation to the sinewave, than the high frequency case. 

We can therefore say that when the sample rate is fixed at 48ksps, a low frequency audio 
sinewave is a lot more accurately interpolated, than a higher frequency audio sinewave. In other 
words, the errors get bigger, and quickly so, as we increase the audio frequency. This can also 
easily be seen experimentally by generating a signal in WSJT-X and then observing the measured
frequencies (this can be done using QDX’s own built-in tools, as described elsewhere in this 
manual). 

The error in frequency measurement is also reduced by measuring over more than one cycle. 
Since we are adding a fraction of a sample at the beginning, and a fractional of a sample at the 
end of each cycle, and counting the number of samples in between – any error on the fractional 
estimations (due to linear interpolation error) will be reduced by counting multiple samples. For 
example, if we measure for 2 cycles, the error will be halved. If we measure for 10, the error will be
reduced by a factor of 10. 

As mentioned earlier, it is quite unnecessary to count the frequency so often as a SINGLE cycle. If
we are measuring say, an audio signal of around 3kHz – do we really need to measure it 3000 
times per second? Not practically speaking, no. 

So the QDX has a configuration built in, which specifies a number of cycles that must be 
measured, and a number of samples that must be measured. BOTH of these parameters must be 
satisfied, before the measurement activity completes. The default values are 1 cycle, and 480 
samples. 480 samples is a time duration of 0.01 seconds. In this configuration, a very low 
frequency signal, below 100Hz (0.01 seconds period) would be measured properly. And at any 
higher frequencies than 100Hz, the minimum samples criteria will dominate, and ensure that the 
averaging period is automatically increased for higher frequencies! For example at 3kHz, 480 
samples will contain 15 cycles, so the error in the fractional period estimation due to interpolation 
inaccuracy, will be reduced by a factor of 15. In this way, high frequencies do more averaging than
low frequencies; we get 100 frequency measurements per second. 

Again these configuration parameters are not particularly critical, and again, the default values will 
suffice for all imaginable purposes and most likely the QDX operator will never want or need to 
change these, other than perhaps for his own curiosity of investigation. 
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Sinewave interpolation

As an aside – for interest only – I did investigate the possibility of more advanced interpolation 
methods than linear (straight line). I spent some enjoyable time experimenting with a method 
which measures the amplitude of the sinewave (looking at the incoming samples) and then fits the 
two samples either side of the zero crossing to an actual sinewave rather than a straight line. 

It did provide some improvement, some observable reduction in error. However, the error 
reduction was not as great as I had expected, and I suspect this is due to limitations in the floating 
point accuracy of the arc-sin implementation, perhaps (speculation) a limitation to the number of 
terms of a polynomial expansion? Furthermore, although the STM32 processor used has a floating
point unit, the calculations were still too slow at the 72MHz CPU clock speed used. In 
experimental measurements the calculations were too slow to be able to perform single cycle 
frequency estimation at the upper end of the frequency range, which is exactly where we most 
need the improved accuracy; multiple cycles were therefore necessary and it was found that the 
improvement in accuracy of averaging simple straight line interpolation over several cycles, was 
more than the improvement in accuracy of the slow sinewave interpolation! 

Furthermore other inaccuracies could creep in, such as the estimation of the maximum amplitude; 
or we’d have to assume the maximum amplitude sinewave, which would work less well on the 
rising and falling keying edges. 

I toyed briefly (very) with the idea of trying to implement a three (or more) point sinewave fit, but 
dismissed it as it would involve even more calculation and be even slower. Polynomial fits were 
another possibility considered. 

But frankly – in the end – the simple linear interpolation is very reliable at the frequency range of 
interest, and is already SO good, that the idea of trying to pursue more advanced approaches, 
seemed, particularly after a day’s worth of investigation, to constitute an unnecessarily frivolous 
indulgence in mathematical decadence. 

Errors conclusion

The frequency estimation by cycle timing method employed in QDX is exceptionally accurate, far 
more precise than needed for any digi modes likely to employed on HF bands during QDX 
operation (I cannot imagine any exceptions). There are a few boundary cases where accuracy 
could conceivably be impaired, and though this is actually still unlikely to be of any practical 
significance, configuration parameters are provided to mitigate and control the errors, with suitable
default values that will be excellent for all conceivable use cases. 

As a final word on audio frequency estimation, I want to also mention that WSJT-X is said to 
transition evenly between two frequency symbol tones, by implementing a raised cosine falling 
envelope shaping on the finishing tone, at the same time as a raised cosine envelope shape on 
the newly starting tone. As discussed previously, QDX just doesn’t do envelope shaping. However,
I believe that to all intents and purposes, that this fancy raised cosine tone envelope shaping is 
equivalent to a gentle “frequency slide” between the old and new tone frequencies. Perhaps it is 
even exactly mathematically equivalent, I don’t know. 

At any rate – for any mode WSJT-X generates, QDX will continuously measure the frequency and 
update the transmitter output frequency accordingly; at 100 updates per second (the default 
configuration) this is plenty sufficient to achieve smooth transitions between tones; additionally the 
frequency synthesis method used in the Si5351A itself causes a “slide” between frequencies not a 
sudden discontinuous transition, because the PLL takes a finite time to settle on the new value. 
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QDX contains its own test and analysis tools built-in; elsewhere in this manual is a description of 
how you can observe these frequency transmissions yourself, using the built-in tools. 

Si5351A fine control

Historically QRP Labs products have set up the Si5351A with an integer frequency, except for the 
Ultimate3S QRSS/WSPR transmitter which has an algorithm during WSPR operation to optimize 
the frequency steps for very accurate 1.46 Hz tone spacing. 

The problem with QDX is that the QDX must faithfully transmit any frequency given to it. The tone 
spacing may be very fine, or it may be coarse. QDX does not know. QDX knows nothing of the 
transmission mode. All QDX does is receive audio tones from a PC and effectively modulate them 
to RF. The tones may be 1.46 Hz spaced in the case of WSPR, or 6.25 Hz in the case of FT8, or 
many other possibilities. Therefore a fixed algorithm for WSPR such as Ultimate3S has, or an 
integer frequency configuration such as used in the QCX CW transceiver, will not be optimum 
here. 

As an example, suppose we want an output frequency of 14,097,002.123 Hz and the firmware has
to decide the parameters to configure the Si5351A chip. So let’s say we chose a MS Synth divider 
of 62 (abiding obediently by the even integer MS Synth divider rule). Now that means the internal 
VCO must operate at 870,014,131.626 Hz. The multiplication factor from 25 MHz is therefore 
870,014,131.626 / 25,000,000 = 34.960565265039996. Now that has to be represented as a + b / 
c where all are integers, b is in the range 0 to 1,048,575 and c is in the range 1 to 1,048,575 (b 
and c are 20-bit numbers – so the max value is 2 ^ 20 – 1). 

The question therefore is the choice of b and c to get the fraction 0.960565265039996. 
Conventionally one may simply set c to 1,048,575 and set b to 0.960565265039996 x 1,048,575 =
1,007,224. Now we can calculate the output frequency:

25,000,000 x (34 + 1,007,224 / 1,048,575) / 62 = 14,097,001.845 Hz

The error in the output frequency is 14,097,002.123 – 14,097,001.845 = 0.228 Hz. It’s rather larger
than we might like; remember also that the error will be different every time and could be better or 
worse than this. 

Well it turns out we took the cowardly way out by choosing the denominator (c) to be 2 ^ 20 – 1 
(1,048,575) and that there are better choices which will bring the ratio b / c very much closer to the
desired fraction 0.960565265039996. In fact the choice b = 416,333 and c = 433,425 works very 
well… look, now the output frequency is: 

25,000,000 x (34 + 416,333 / 433,425) / 62 = 14,097,002.123 Hz

The error, to three decimal places, is now 0.000. Bingo!

However the question is STILL, how to choose b and c to get this magical and wonderful result. 
The answer is “best rational approximation” which delves into an area of mathematics called 
“continuing fractions”. Rather than spoil (and lengthen) this manual with my own garbled 
interpretation, allow me to just refer you to Google and Wikipedia 
https://en.wikipedia.org/wiki/Continued_fraction . 

The implementation in QDX is a simple and fast iterative algorithm based on the information found
here, which rapidly converges on values for b and c which provide a very optimal ratio. 
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4.13 Class-D Push-pull Power amplifier

An interesting power amplifier circuit was designed specially for this transceiver. There are four 
BS170 transistors. Two are connected in parallel for the “push” side, and two connected in parallel
for the “pull” side. Each side is driven by two AND gates of a 74ACT08 quad AND-gate IC, in 
parallel to ensure strong and fast drive. 

The AND gate drivers are clocked from two outputs of the Si5351A Synthesizer which are 
arranged to have 180-degree phase shift. This provides the necessary phasing for the “push” and 
“pull” sides of the amplifier, without requiring an input transformer. All the 74AC08 AND gates are 
enabled by a “transmit” or in other words, a “key down” signal from the microcontroller; only when 
this signal is high, are the oscillator signals passed on to the MOSFET “gate” connections – this is 
the operation of the logical AND function. 

The outputs of the “Push” and “Pull” sides are combined by transformer T1.

This power amplifier design provides a number of useful features:

• Class-D operation is efficient compared to Class C, or even worse, Class A/B linear which 
as discussed previously, is overkill for this application. Class-D is not as efficient as Class-E
(as used in the QCX CW transceiver), but it better suited to a multi-band transceiver, since 
a Class-E amplifier has a resonant load circuit and this must be switched by band. 

• Push-pull operation provides 5 W output power at a lower voltage than would be needed in 
a single-ended amplifier (9 V supply produces about 5 W output). 

• Push-pull operation cancels even harmonics which are therefore at a very low level (due 
only to imperfect cancellation due to slight differences in transistor characteristics). 
Importantly the 2nd harmonic level is very low, which greatly simplifies the demands on the 
Low Pass Filters that will subsequently clean up the signal after the amplifier. 

• Push-pull operation allows us to use four BS170 transistors to spread the load, but they are 
only connected in pairs so the driver only has to drive two paralleled gate capacitances not 
four. 
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• Using an antiphase drive (the precise 180-degree out of phase signals from the Si5351A) 
eliminates the need for an input transformer that is normally required in push-pull power 
amplifiers. 

• All components are low cost and easy to replace in the unlikely event of failure. 

As an example spectrum analyzer output, consider the following trace showing an 80m QDX. For 
this measurement, a 50-ohm dummy load was connected directly at the output of transformer T1, 
with no Low Pass Filtering. 

The second harmonic is seen, about -70 dBc (70 dB below the fundamental) due to the 
cancellation effect of the Push-Pull amplifier. The subsequent even harmonics are even lower 
amplitude. Only the odd harmonics are problematic and require filtering. 

4.14 Switched output Low Pass Filters

Every radio transmitter always requires low pass filters at its output to attenuate any out of band 
spurious emissions to sufficient level to comply with regulatory requirements (for example FCC in 
United States). 

In QDX the Low Pass Filters are carefully optimized to provide excellent performance with low 
parts count. This can be achieved because the Class-D push-pull power amplifier design produces
a very low level of even harmonics. 
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It is very important to reiterate that Low Pass Filter and Power Amplifier design must be 
considered carefully, at an overall SYSTEM LEVEL. In fact this applies to the entire transceiver 
design, but nowhere more importantly than the transmitter output stages, where the performance 
is critical to your regulatory compliance. The requirements on Low Pass Filtering are determined 
by the level of spurious emissions produced by the final Power Amplifier as well as levels in earlier
stages feeding into the power amplifier. One cannot simply transplant a circuit block from one 
transceiver design to another, and expect the performance to be satisfactory. System level design 
is critical. 

In QDX there are three Low Pass
Filters. Each is made up of a 5-
element filter, with a 6th element as
resonant trap at the 3rd harmonic.
The three filters are:

• 80m

• 40m

• 30/20m

The intrinsically low levels of 2nd

harmonic is what lets us share the
third filter between 30m and 20m. 

There is a PIN diode switch either side of each Low Pass Filter. So at any one moment, one pair 
of switches is activated, to switch the appropriate Low Pass Filter into the circuit. 

The discussion of this block of the circuit divides naturally into a two parts: the LPF design, and the
PIN diode switches design. 

Low Pass Filters

The Low Pass Filter design was done using the Elsie program by Tonne Software. It is freeware 
and can be downloaded from here: http://tonnesoftware.com/elsie.html

80m:

For 80m this is the final schematic, having a resonant trap at the third harmonic:

The simulation shows:
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Fundamental: 3.5 MHz -0.17 dB 
Second harmonic: 7.0 MHz -26.4 dB
Third harmonic: 10.5 MHz -67.5 dB

40m:

For 40m this is the final schematic, having a resonant trap at the third harmonic:

The simulation shows:
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Fundamental: 7 MHz -0.17 dB 
Second harmonic: 14 MHz -28.8 dB
Third harmonic: 21 MHz -72.1 dB

30/20m:

For 30/20m this is the final schematic, having a resonant trap at the 20m second harmonic, 
28MHz. This is a departure from the 80 and 40m designs, which have the trap at the third 
harmonic. The reason for this is that the 20m second harmonic is close to the 30m third harmonic. 
This was found to represent an optimal compromise between 30m and 20m performance.

The simulation shows:

20m:

Fundamental: 14 MHz -0.12 dB 
Second harmonic: 28 MHz -73.8 dB

On 30m, while the second harmonic (20.2 MHz) attenuation is only about 12dB, the even 
harmonics are in any case at a very low level; the more important harmonic is the 3rd harmonic and
for 30.3 MHz the attenuation is about -45 dB which is very satisfactory. 
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Low Pass Filter switching

The schematic of the Low Pass Filters and switching arrangements is shown below. 

Very often relays are using for Low Pass Filter switching. However relays have several 
disadvantages:

    • Bulky
    • Noisy
    • Expensive
    • Potentially unreliable (mechanical moving parts)
    • Poor isolation at RF, can be important in some applications (unless expensive relays used)
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Cost and bulk are of critical importance here. A better solution comes in the form of diode 
switching. Not just any old diode, PIN diodes. This is a fascinating topic and I did a great deal of 
research and experiment to perfect the circuits used in the 50W PA kit http://qrp-labs.com/50wpa 
and many of those ideas are carried over to the QDX design. 

Ordinary diodes cannot be used for switching
because they could act as Rectifiers, switching on
and off in time with the RF cycle. A PIN diode,
however, is different. It is a diode with a wide
undoped “intrinsic semiconductor” region between
the usual P-type and N-type doped semiconductor layers of a regular diode (Wikipedia image). 

The important point is that this undoped “intrinsic layer” acts like a storage reservoir. When 
incoming forward-biased current arrives, this “intrinsic layer” fills up with electrons. When the diode
is reverse biased, it takes time for all these electrons to empty out of the intrinsic layer. At high 
enough frequencies, the time available is too short! So the diode never “turns off”. It remains 
conducting through the whole RF cycle. 

PIN diodes behave like variable resistances. Their resistance is determined by the amount of DC 
forward bias current. They are near-perfect variable resistors which add very little distortion to the 
signal. In our case, we don’t care about variable resistors, all we want is either a very low 
resistance (On), or a very high resistance (Off). 

A problem is that PIN diodes tend to be expensive, harder to find
items. However, a solution comes along, the 1N4007 rectifier
diode! This is the big brother of the 1N400x series of rectifier
diodes, and has a reverse voltage rating of 1,000 V. By good
fortune, its internal construction in order to achieve this very high
PIV rating, is very similar to a “real” PIN diode. Hence the
1N4007 is often referred to as the “Poor man’s PIN diode”! 

No doubt the 1N4007’s characteristics are not repeatable enough, or its resistance not linearly 
controllable enough, or some such other imperfection, that it is not suitable for all applications. But 
in our application where all we need is an On/Off switch at HF, a 1N4007 costing mere cents 
functions just as well as a “real” PIN diode costing 50x the price! 

1N4007 functions well enough as a PIN diode switch across the whole of HF to 10m band, and 
even down to 500kHz. 

What about dynamic range and third order intercept point IP3? A properly handled 1N4007 should 
not impact the dynamic range or IP3. An excellent set of measurements by Claudio IN3OTD see 
https://www.qsl.net/in3otd/electronics/PIN_diodes/PIN_diodes.html and https://www.qsl.net/in3otd/
electronics/PIN_diodes/1N4007.html confirms the excellent characteristics of the 1N4007, which at
HF in this switching application are similar to other PIN diodes. Other experimenters have 
determined similar results. Broad conclusions are that a properly biased 1N4007 at HF (1.8 MHz-
30 MHz) has the following characteristics:

• “On” insertion loss less than 0.1 dB for 10 mA forward bias current
• “Off” isolation at least 30 dB (at worst case, 30 MHz frequency)
• IP3 > +50 dBm

Therefore the use of 1N4007 PIN diode switches should result in very little loss of transmitter 
output power, very little loss of sensitivity on receive, and will not degrade the excellent IP3 (and 
dynamic range) characteristics of the QDX transceiver with its high performance double balanced 
Quadrature Sampling Detector front end. 
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What of “proper biasing of PIN diodes”? 

In my opinion the most excellent reference for the use of PIN diode switches for HF 
Transmit/Receive is the work of Don W6JL. Don has a very informative page on QRZ.com https://
www.qrz.com/lookup/w6jl and a long article “Homebrew PIN diode QRO QSK system” in 
Funkamateur, March 2016 which is available as a PDF on the internet see 
https://www.funkamateur.de/tl_files/downloads/hefte/2017/w6jl_improved_qsk_system_mar_2016.
pdf. Study of W6JL’s work should be the first task of anyone wishing to experiment with HF PIN 
diode switching. Don has a separate homebrew transmitter and receiver. The transmitter is 600W 
and is permanently connected to the antenna and the receiver, via his solid state PIN diode 
switching system. Sidetone is via the receiver monitoring the transmitter directly! The switch 
provides 137dB of isolation in the “Off” state. Amazing! We don’t need anything so extreme (or 
complex) here – but the principles are well described by W6JL and his work is inspiring.

It is possible to distill the whole topic into two important rules:

• To switch the PIN diode Off, apply a large reverse bias VOLTAGE. The voltage should be 
higher than the peak-to-peak RF being switched. 

• To switch the PIN diode On, apply a forward bias CURRENT; the more current, the lower 
the insertion loss. At 10 mA forward bias, the insertion loss is only about 0.1dB. One can 
increase it a bit further, to be on the safe side.

When the two “rules” are followed carefully, the performance of the PIN diode switch is excellent; 
furthermore it is low cost and reliable to implement using inexpensive common components like 
the 1N4007. In the QDX transceiver the switching task is considerably simplified compared to the 
50W PA kit, because here there is no need to support fast QSK (full break-in) operation or provide 
a receive bypass path. 

To understand the operation of the switching, consider just ONE of the Low Pass Filter circuits, the
30/20m circuit. At any time, one set of the three Low Pass Filter switch pairs are ON, and the other
two are OFF.

Let’s consider first, the switch in the ON state. The partial schematic is:
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Remember that for a diode to be ON, it should be passing at least 10 mA current. In QDX, the 
forward current is set at 38 mA during transmit, this is determined by the bias circuit around Q1 
and Q2 which will be discussed in a moment. Why so high, you may wonder? The reason for 38 
mA is that the diode, if biased at lower forward currents, increases the level of even order 
harmonics due to its own distortion. 38 mA switches it ON so well that the distortion level is very 
low. 

Remember also that capacitors block DC, but allow the passage of RF; whereas inductors block 
RF, but allow the passage of a bias current (Direct Current, DC). 

In the ON state, the microcontroller I/O pin controlling the Low Pass Filter is set to high 
impedance, resistor R12 (10K) to +5V then pulls the potential at the gate of MOSFET Q5 to +5V, 
switching ON the Q5 MOSFET. The bias circuit can now drive 38 mA through each of L1 and L11, 
through the respective diodes D3 and D6, through L4 and L10 respectively, the sum of the 
currents (76 mA) through L9 and through the Q5 transistor to ground. These flows are indicated by
the pink arrows on the diagram. The various capacitors block DC, only permitting the bias current 
to flow through the components indicated by the pink arrows. 

Now that a sufficient forward bias current flows in D3 and D6, RF will see a low resistance all the 
way from the PA, through C34 and D6 to the Low Pass Filter; and on the other side of the filter, RF
will pass easily through D3 and C2 right to the antenna. L1 and L11 block RF from escaping into 
the bias current circuits. 

In the ON state, we think about current (forward bias current). In the OFF state, we must think 
about voltage (reverse bias voltage). Here’s the same schematic, labeled for the OFF state. 

Remember the first rule of PIN diodes? “To switch a PIN diode off, apply a reverse voltage that is 
larger than the peak-to-peak voltage of the applied RF”. Now, 5W of RF is 45V peak-to-peak 
(assuming 50-ohms impedance) and therefore we need more than this, as reverse bias, to switch 
off the diodes. Obviously this is not a voltage that is available from any supply rail! While Don 
W6JL had available 350V from the screen grid of the valves (tubes) in his transmitter – we have 
no such luxuries available here. 
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The very neat solution is to “borrow” a little energy from the PA output itself! Then voltage double 
and rectify it. The result is a nice clean DC which is always more than the peak-peak of the signal, 
and plenty enough to reverse bias the diodes so they are always perfectly and completely OFF. 

This doubler section of the schematic is formed by D9, D8, C32 and C27. The resulting voltage, 
we shall call B+ in honour of valve (tube) circuits of old. Or HT if you prefer. It’s exact value will 
depend on the impedances and other factors but don’t worry, it is sufficient for the proper diode 
OFF condition. 

Now this voltage passes through resistor R9, through inductor L9, and through inductors L4 and 
L10, right to the cathodes of diodes D3 and D6 respectively. The inductors don’t impede DC; 
resistor R9 would impede DC but the current involved is near zero so practically speaking there is 
no significant voltage drop across R9. The anodes of diodes D3 and D6 are at a potential of about 
+0.7 V. Why? Because whilst this Low Pass Filter is OFF, one of the other two LPFs is switched 
ON, and 38 mA current is flowing through each of its diodes, resulting in a voltage across the 
diodes of about 0.7 V. 

So with B+ on the cathode and 0.7 V on the anode, the diodes see a large reverse bias voltages 
and satisfy the conditions for the diodes to be OFF. They present a high resistance to the RF, 
which cannot then flow through this Low Pass Filter. It is OFF. 

The next thing to worry about is what happens when we are NOT transmitting. The signal during 
receive, still needs to pass through the proper Low Pass Filter for the band of operation. Its 
switches still need to be ON, and the other two LPFs OFF. Now there is no large 5 W (45 V peak-
peak) signal to rectify and double to make a large B+ voltage. On the other hand, we also no 
longer need such a large B+ voltage, because now the Low Pass Filters (and their switches) are 
only seeing the small signals picked up by the antenna. To provide some voltage to reverse bias 
the PIN diodes, D7 connects +12V (the QDX supply voltage) to B+ during receive, when the 
doubler is not producing rectified RF (during transmit). 

The other minor detail to consider, is that during Receive we aren’t handling anywhere near such a
large amplitude signal so we don’t really need such a large current as 76 mA (total for two diodes) 
forward bias through the ON switches. A smaller current will suffice and will reduce the overall 
QDX receive current, making it more battery friendly. 

Here’s the bias circuit
that generates the
appropriate forward
bias currents. 

When in receive mode,
the TX signal from the
microcontroller is at 0V;
this keeps Q2
MOSFET switched off. 

Q1 is a P-channel
MOSFET and its gate
is pulled to +12V when
Q2 is off via 10K
resistor R3, meaning
that Q1 is also
switched off. 
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In this configuration current flows from the Vcc supply rail (+5 V) through the 1 K resistors R1 and 
R6, and the inductors L1 and L11, to the respective two diodes. The current in each diode is given 
by Ohm’s law I = V / R. The voltage across the resistor is 4.3 V because the voltage across the 
diode is 0.7V approximately. Therefore the current flow in each leg is 4.3 V / 1000 ohms = 0.0043 
A, which is 4.3mA. 

So in receive mode, the forward bias in each of two diodes in the ON Low Pass Filter, is 4.3mA for
a total switch current of 8.6mA, which is not unreasonable. 

When the TX signal from the microcontroller goes high, transistor Q2 switches on, pulling the gate 
of Q1 to near ground potential, thereby switching Q1 on. Now 12 V flows through Q1, and through 
each of R2 and R4, and on to the diodes. The current contribution through each resistor is given 
by Ohm’s law I = V / R. The voltage across the resistor is approximately 11.3 V because the 
voltage across the diode is 0.7V approximately. Therefore the current flow in each leg is 11.3 V / 
330 ohms = 0.0342 A, which is 34.2 mA. This sums with the current from the +5 V supply rail, to 
give a total of 34.2 mA + 4.3 mA = 38.5 mA. 

So in summary, due to this biasing circuit:

• In Receive, total switch current is 8.6 mA approximately
• In Transmit, total switch current is 77 mA approximately

4.15  Voltage regulation and supply decoupling

The two fixed voltage regulators in the QDX design produce +3.3V and +5.0V. The voltage 
regulator type is AMS1117. This voltage regulator became infamous in the QRP Labs QCX-mini 
CW transceiver. It was found to be unstable in the case of intermittent power connection such as 
can occur when a power supply cable is hot-plugged. Furthermore, hot-plugging other connections
could cause a temporary short circuit of the +5V rail to ground, which also destroyed the 
AMS1117. The failure mode is particularly unpleasant because rather than fail open-circuit, it fails 
short-circuit, and passes the input voltage (for example +12V) to the +5V rail, destroying 
everything on the +5V rail. 
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In the QCX-mini first batch, the problem was partially mitigated by addition of a 10uF electrolytic or
tantalum capacitor right at the power input to the radio. This prevented the issue with unstable 
power supply but did not address the issue with hot-plugging to the PTT plug. 

In subsequent batches of QCX-mini, the voltage regulator was changed to 78M05 which is 
practically indestructible. 

Unfortunately the QDX boards were manufactured before the delicate nature of the AMS1117 
became known. Therefore the 10uF capacitor addition at the input power connector is also 
required on the QDX. The issue with hot-plugging other connections will not arise since the only 
other two connections on QDX are the USB connector and the RF connector, neither of which 
have any connection to the +5V or +3.3V rails. Therefore provided a capacitor of at least 220uF is 
added, and the supply voltage is kept below 12V, the AMS1117 will not cause an issue. 

QDX has NO reverse polarity protection! 

Make sure you connect the power correctly. The coaxial DC power supply connector must 
have +12V on its center pin and Ground on its outer barrel. 

REVERSE POLARITY will kill your QDX!
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5 Firmware Update procedure

On occasion QRP Labs may make available updated firmware for QDX, in order to deliver bug 
fixes or functionality enhancements. 

QDX contains a new firmware update procedure for STM32-series microcontrollers, called QFU 
(QRP Labs Firmware Update) which provides the following features:

• Easy – anyone can do the firmware update

• No additional hardware required: only a standard USB A-B cable (or micro-USB cable if 
you have installed a micro-USB connector)

• No additional software required: just the standard file manager application that is already
available on any PC

• No drivers: no special drivers need to be installed, the existing drivers on any modern PC 
operating system are used

• Works on any PC Operating System: and in the same way: Windows, Linux, Mac

• Secure: firmware files are published on the QRP Labs website and are encrypted using 
256-bit AES encryption technology

Entering bootloader (firmware update) mode:

QDX provides two possible ways to enter firmware update mode:

1) On powering up QDX, you will see the QDX status LED flickers quickly for 5 seconds after 
power up, then illuminates solidly. If you power down QDX during this 5 seconds, then apply 
power again, QDX will now boot up in QFU (Firmware Update) mode.

2) Select the “Update firmware” menu option in the QDX Terminal (see subsequent section of 
this manual). QDX will then enter firmware update mode.

In firmware update mode, the status LED flashes slowly. 

Exiting bootloader (firmware update) mode:

QDX provides two possible ways to exit firmware update mode:

1) Update the firmware! After updating the firmware, QDX will automatically reboot in normal 
operating mode. 

2) Power down QDX, and re-apply the power again. QDX will reboot in normal operating mode.

USB Flash memory stick emulation:

In the firmware update mode, the QDX pretends to be a USB Flash memory stick, having a 
4MByte capacity and implementing a FAT16 file system. This virtual “Flash stick” contains two 
files:

1. the firmware program file of the QDX microcontroller. You may read the file from QDX, or 
write a new one, just by dragging files in your file manager application. 
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2. EEPROM contents: the QDX configuration and log file (if enabled). Again, you can read the
file from QDX or write a new one to QDX, simply by dragging files in your file manager 
application. 

On entering the Firmware update procedure, a pop-up window should appear on your PC. On my 
system (Linux XUbuntu 18.04) it looks like this:

Click the OK button. 

The File Manager window will then open, and on my system looks like this:
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QDX appears as a removable USB Flash device named “QDX”, and the folder two files. The 
firmware file in this example is named shows a single file which is the firmware version file, 
1_00_001.QDX in this example. The EEPROM file is always named EEPROM.QDX. You can read
and write EEPROM files in order to make and restore backup copies of your configuration etc. 

The firmware file name must not be longer than 8 characters, and cannot contain punctuation 
or spaces; the file extension must be no more than 3 characters. This is because the file system 
emulation is FAT16 and these are the specifications of the FAT16 format. 

You may check the properties of the file and will note that it is a 119.5K file. QDX firmware images 
are always a 119.5K file. The creation date and modification date etc. have not been set, because 
it was important to minimize the size and complexity of the QFU bootloader, in order to maximize 
the space available to the application firmware.

You may copy the existing firmware file to another directory of your computer. Crucially, to do the 
firmware update, all you need to do is copy the new firmware file to this QDX “Flash disk”.

Download the new firmware file from the QRP Labs website, unzip it, and simply drag it into the 
folder where the existing firmware file version is shown. Or copy and paste it, however you wish. 

The file on the QRP Labs website is a ZIPPED file, please be sure to unzip it to get the .QDX
file before copying it to QDX. 

As soon as you copy the new file to the QDX QFU “flash drive”, the QDX QFU bootloader erases 
the current program from its memory and installs the new one. 

The QDX firmware is 256-bit AES encrypted and this means:

• The encrypted QDX firmware file will only work on a QRP Labs QDX board, it cannot be 
installed on any other board, even one containing the same processor.

• No other firmware file will work on the QRP Labs QDX board except an official QRP Labs 
encrypted QDX firmware file.

The procedure will vary slightly for different Operating systems but in all cases is just a simple 
matter of copying the new firmware file to the emulated QDX QFU USB Flash drive.

The above firmware update procedure works on ANY modern OS because the QFU 
bootloader emulates a USB Flash memory stick with the USB Mass Storage Device (MSD) 
class, for which drivers are already present. 

The QFU bootloader implements a USB device stack (Mass Storage Device class), emulated 
FAT16 file system, Flash erase/write, and 256-AES encryption.

QDX assembly Rev 1.06 81



6 Terminal Applications

QDX provides a suite of applications which may be accessed via a Terminal emulator running on 
your PC. These applications provide configuration utility, and various self-test tools. It is very 
educational and interesting to experiment with these tools. 

However, most QDX users need never use the terminal applications, it is not necessary for 
ordinary operation of QDX with WSJT-X etc. The terminal applications are for the interested 
user, or if you need to set up a particular configuration. 

The terminal applications display everything as ASCII text in a 80 x 24 character window. It’s not 
as polished as a dedicated graphical user interface software application for QDX would be. 
However, it has the advantage of requiring no special software or drivers, and all the variations 
that would have to be supported for different PC Operating Systems such as Mac, Windows and 
Linux, software installation procedures etc. Instead, all the applications are hosted and coded in 
the QDX itself. The terminal emulator is only used to display the results. This keeps things simple 
and low maintenance. After all, the terminal applications are useful bonus features rather than 
core QDX functionality. 

6.1 PC terminal emulator

I use Linux (XUbuntu 18.04) and I’m using the PuTTY terminal emulator. There are numerous 
other terminal applications which will work fine. You may have your own favourite. They are all 
capable of correct operation with QDX in its terminal mode. 

I start PuTTY using command line “sudo putty” then connect to QDX on /dev/ttyACM1. Again as 
before (refer to the Operating Instructions for connecting to QDX using CAT on WSJT-X) it is 
necessary to know which serial port is being used by QDX. There is also a guide to identifying the 
serial port at http://qrp-labs.com/qlg2 (scroll down the page); or you could use WSJT-X. 

Make sure WSJT-X is NOT running, when you connect to the QDX serial port using the 
terminal emulator. Only one PC application at a time can connect to Virtual COM Serial 
ports. 

Set the size of the terminal window to 80 columns and 24 rows. 
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6.2 Entering terminal applications mode

Normally the QDX serial port is connected internally to the QDX’s CAT command interpreter. CAT 
commands include text and numbers, each CAT command is terminated by a semicolon. CAT 
commands never include a carriage return (enter). 

Note that when the terminal is connected, you can actually type on your keyboard to send CAT 
commands. For example, try typing FA; (just those three characters – no Enter at the end). The 
text FA00007074000; will appear on the terminal. FA is the command to read or set VFO A, and 
the result is 7.074 kHz, the default QDX startup frequency. HOWEVER, this is not a very 
convenient or easy way to try out CAT commands, there is a CAT command testing application 
which is much easier to use. 

To switch to terminal applications mode, simply press the Enter key on your keyboard. Now the 
terminal applications mode will appear in your terminal emulator window, as shown below. The 
screen shows the QDX firmware version (coloured yellow at top left), and a list of applications 
coloured white. You may use the cursor keys to move the highlighted application up and down in 
the list, and press Enter to select an application. Any application can be quit by pressing Ctrl-Q 
which returns the terminal to the main menu screen. 

Operation of each of the applications will be described in detail in subsequent sections. 

6.3 Exiting terminal applications mode

When exiting terminal applications mode, do not simply close the terminal emulator window. Doing
so will leave the QDX in terminal applications mode and it will not accept CAT commands. To 
switch it back to CAT command mode, use the cursor keys to scroll down to the “Exit terminal” 
option at the bottom of the list, and press Enter. The screen is now cleared, and QDX is back in 
CAT command mode. Only then should you close the terminal emulator window. 
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6.4 Configuration

The configuration screen allows entry of various QDX configuration parameters. The default 
values are suitable for the vast majority of operating use. The following paragraphs describe each 
configuration setting in turn. Use the up/down arrows to select the item you wish to edit. The 
cursor is positioned at the last character of the value. Numeric values have a defined field length. 
You can press the backspace key to delete the current entry in whole or in part, and type in the 
new value. For non-numeric configuration parameters, you can use the left and right arrow keys to
choose between the available values. 

TCXO Frequency

Default is 25000000 (25 MHz). This is the oscillation frequency of the QDX TCXO (Temperature 
Controlled Crystal Oscillator) and is used for calculating Si5351A parameters for setting the 
desired QDX operating frequency.

The supplied TCXO is a high precision component and will normally be found to be within (a one 
standard deviation error of) +/- 5 Hz of the specified 25 MHz value. It is not normally particularly 
necessary from an operating perspective, to have a more precise operating frequency than this. 
Remember that the error is also scaled to the operating frequency. So a 5 Hz error at 25 MHz will 
translate to a 2.8 Hz error at 14 MHz. 

However the perfectionists among you may wish to calibrate your operating frequency precisely – 
and this menu entry is for you! 

To configure the correct TCXO reference frequency, you will need to measure your operating 
frequency, deduce the error amount, and apply a correction to the TCXO frequency configuration 
parameter. 
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As an example, suppose your transceiver is set to a USB “Dial Frequency” of 14.0956 MHz and 
WSJT-X is set up to transmit WSPR at 1500 Hz audio offset. This should result in a transmission 
frequency of 14.097100 MHz. But let’s suppose that you measure it accurately, and you find that it
is 3 Hz high, at 14.097103 MHz. Now what? 

There’s an error of +3 Hz in your operating frequency. To work out the required correction to the 
TCXO reference frequency configuration, calculate 3 Hz multiplied by a ratio of 25 MHz / 14.0971 
MHz, which results in 3 Hz x 1.77 = 5.3 Hz. 

Therefore you should increase the reference frequency by 5Hz. So move the highlight to the 
TCXO frequency using the up/down cursor keys, then press the backspace key once, and type 5. 
That will change the reference frequency to 25000005. 

How about if you don’t have an accurate way of measuring your operating frequency? I have 
developed tools for QRP Labs website to help you to use the WSPRnet reporting network to 
determine your operating frequency quite accurately. To use these tools, simply use WSJT-X and 
QDX to operate as a 20m WSPR reporter (receiver) for several minutes, then look at this page: 

https://qrp-labs.com/images/wsprnet/rxerror.html

Look for your callsign in the list, which shows the error in your reception reports (operating 
frequency error). 

Alternatively, you may operate as a WSPR transmitter using WSJT-X and QDX, and the following 
page will show your actual transmitting frequency:

https://qrp-labs.com/images/wsprnet/txfreq.html 

Both of these QRP Labs pages are updated every two minutes. The analysis loads the last 5 
minutes (approximately) of 20m WSPR reports from the WSPRnet website database. It cross-
references all the reports, analyzing the error of receiver stations by cross-referencing against 
reports of the same transmitters by other stations. In this way calibration errors of all receiving 
stations in the network are averaged out. The accuracy is generally within 1 or 2 Hz. 

Sideband

This setting determines the demodulation sideband. Normally Upper Sideband (USB) is used for 
all digital modes, and is the default setting. If you wish to use Lower Sideband (LSB) for some 
reason, you can change it here. Use the left and right arrow keys to change between LSB and 
USB. 

Default frequency

This is the default start-up frequency of QDX at power-on. It defaults to the 40m FT8 frequency 
7.074 MHz. If you would like it to power up on a different frequency, you may edit this 
configuration setting. 
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Audio gain

According to the WSJT-X documentation, the software operates optimally when the level meter on
the bottom left side of the screen is at 30dB when no signals are present. It is not particularly 
critical and as long as the signal level bar remains green-coloured, the application will function 
well. However if you find that you need to change the default gain of the QDX, you may do so by 
editing this parameter. Note that this parameter can also be set and retrieved using the CAT 
command AG; though the value set and retrieved by AG is scaled by a factor of 256. For example,
at the default audio gain of 5000, a CAT command AG; will return the result AG19;

VOX

If you want to use VOX (Voice Operated Transmission) then set this parameter to ENABLE. Any 
incoming audio from the PC will then operate the Transmit/Receive switch and be transmitted. 
When the audio stops, QDX will switch back to Receive automatically. The problem with this is 
that any system sounds on your PC, if the PC is configured to deliver these to the QDX USB 
sound card, will operate the transmitter and be transmitted. 

The default setting “DISABLE” requires a CAT command from the PC host application (WSJT-X 
for example) in order to enable the transmitter. This is discussed in this manual in the operating 
manual section, on setting up WSJT-X for QDX. 

If you wish to use software that does not support CAT Transmit/Receive switching, this may be 
one reason why you would want to enable VOX. 

Rise threshold

This is a percentage signal level of maximum, above which the transmitter will be keyed down 
(switched on). Its purpose is to ignore very low amplitude audio signals at the start of a raised 
cosine keying envelope, whose audio tone could be decoded inaccurately due to quantization 
error. This is discussed further in the Design section of this manual in the Audio Frequency 
Analysis section. The default value of 80% should be fine for all purposes. The value should not 
be set too close to 99%, since higher frequency audio where the number of samples per cycle is 
small, may not contain a value sufficient to trigger this threshold in every cycle. 

Fall threshold

This is a percentage signal level of maximum, below which the transmitter will be keyed up 
(switched off). Its purpose is to ignore very low amplitude audio signals at the end of a raised 
cosine keying envelope, whose audio tone could be decoded inaccurately due to quantization 
error. This is discussed further in the Design section of this manual in the Audio Frequency 
Analysis section. The default value of 60% should be fine for all purposes. The value should not 
exceed (or be close to) the Rise threshold parameter, otherwise the transmitter will be repeatedly 
keyed on and off falsely. 
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Minimum cycles

This parameter specifies the minimum number of audio cycles to use, in the measurement of 
audio cycle period, for audio frequency calculation. This parameter is used in conjunction with the 
Minimum samples parameter: both conditions must be satisfied in order for an audio frequency 
measurement to be completed. This parameter is discussed further in the Design section of this 
manual in the Audio Frequency Analysis section. The default value of 1 should be fine for all 
purposes. 

Minimum samples

This parameter specifies the minimum number of audio samples to use, in the measurement of 
audio cycle period, for audio frequency calculation. This parameter is used in conjunction with the 
Minimum samples parameter: both conditions must be satisfied in order for an audio frequency 
measurement to be completed. This parameter is discussed further in the Design section of this 
manual in the Audio Frequency Analysis section. The default value of 480 should be fine for all 
purposes. 

Bearing in mind that there are 48,000 audio samples per second, a value of 480 specifies a 
minimum 0.01 second audio measurement period. In other words, there will be 100 measurements
of the audio frequency, per second, in this default configuration. This is sufficient to ensure that 
high audio frequencies are measured accurately. In the unlikely event that frequencies below 
100Hz need to be measured, the “Minimum cycles” value (1) will ensure that a longer 
measurement period is used, to measure one cycle. 

Discard cycles

This parameter specifies the number of audio cycles (zero crossings) which are ignored, when 
audio is first detected. The reason for this parameter is that in conjunction with the “Rise threshold”
parameter, it can be seen that the first audio cycle after the threshold is passed, is not a complete 
cycle. The following zero crossing therefore needs to be discarded because its period 
measurement will be too short. The default value of 1 should be fine for all purposes. 

IQ Mode

When IQ mode is enabled, the raw I and Q channels from the ADC are fed to the USB soundcard 
directly, without any demodulation. This is suitable for people wishing to experiment with using 
QDX as an SDR front end, with PC SDR software to demodulate I and Q channels. Remember 
that there is a 12kHz IF offset applied to the VFO. 

IQ Mode is not suitable for use with WSJT-X and other Digi mode programs. 

Japanese band limits

When this setting is enabled, QDX will refuse to go into transmit mode if the specified synthesis 
frequency is outside the Japanese band limits as specified in the JARL bandplans document 
https://www.jarl.org/English/6_Band_Plan/JapaneseAmateurBandplans20200421.pdf. This setting is useful for 
Japanese license regulations compliance. 
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6.5 Audio filter sweep

QDX contains its own internal signal generator, which can be used to sweep the audio passband 
of the receiver, checking the audio response and the unwanted sideband cancellation. 

Connect a dummy load for best results.

On entering the application, a sweep automatically commences. The percentage completion of the
frequency sweep is indicated in the bottom right corner of the screen. 

The sweep starts at 100 Hz (injected signal is 100 Hz higher than the “USB Dial Frequency”, then 
proceeds in 50 Hz steps up to and including 3850 Hz. The RF frequencies (“USB Dial Frequency”)
used for bands 80, 40, 30 and 20m are 3.573, 7.074, 10.136 and 14.074 MHz respectively. The 
vertical axis shows audio decibel (dB) level. The offset is arbitrary. Gridlines axis are displayed in 
blue. Vertical gridlines are every 20dB, and horizontal axis gridlines every 1000 Hz. Gridline labels
are displayed in blue; the minimum and maximum audio level (in dB) displayed in white, and the 
maximum audio sweep value also displayed in white. 

The chart contains two lines, the line of yellow asterisks is the Upper Sideband (USB) and the red 
line is Lower Sideband (LSB). In the default demodulation mode (USB), we expect to see the 
yellow line nice and flat between the filter cut-off points 150 Hz to 3.2 kHz. The red line is the 
unwanted sideband and we expect to see it around 60dB below the wanted sideband. 

The – and + keys can be pressed to move down and up to adjacent bands. Generally the result 
should not differ much from one band to the next. 
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6.6 RF filter sweep

QDX contains its own internal signal generator, which can be used to sweep the receiver input 
Band Pass Filters, checking its response and center frequency. Though the difference in 
performance is small, the perfectionist may wish to adjust (by squeezing turns) the Band Pass 
Filter inductor L12 to optimize the center frequencies of the filters. 

Connect a dummy load for best results.

On entering the application, a sweep automatically commences. The percentage completion of the
frequency sweep is indicated in the bottom right corner of the screen. 

The center frequency and sweep width are defaulted appropriately per band, to show several MHz
of frequency sweep cleanly, and are not adjustable. The vertical axis shows audio decibel (dB) 
level. The offset is arbitrary. Gridlines axis are displayed in blue. Vertical gridlines are every 20dB, 
and horizontal axis gridlines as appropriate to the band. Gridline labels are displayed in blue; the 
minimum and maximum audio level (in dB) displayed in white. 

A vertical line is shown at the position corresponding to the default operating frequency in the 
current band. Ideally the peak of the response (line of yellow asterisks) should coincide with the 
center frequency of the band. The filters are not very very sharp so the performance degradation 
by being slightly off frequency is not severe. In the example screenshot (40m), the center 
frequency is incorrectly somewhat below the 40m operating frequency. 

The – and + keys can be pressed to move down and up to adjacent bands. 
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6.7 Input analysis

The Input analysis application is one of the most interesting screens in the QDX Terminal 
application suite. It shows a “waterfall” which scrolls upward, with the measured audio frequency 
shown as a yellow block in each row, with its horizontal position determined by its frequency. The 
scroll rate, and the screen width, are adjustable. The application can be used for checking the 
accuracy of the frequency analysis (for example when changing configuration parameters 
“Minimum cycles” and “Minimum samples” at various incoming audio frequencies). 

Keyboard controls

During operation, the following keyboard buttons may be pressed to control the operation of the 
waterfall:

CTRL-Q: Quit the input analysis application

Right arrow: Increase the screen width (higher number of Hz per horizontal division)

Left arrow: Decrease the screen width (lower number of Hz per horizontal division)

Up arrow: Scroll faster (shorter time interval per vertical division)

Down arrow: Scroll slower (longer time interval per vertical division)

Space bar: Pause or un-pause the display; when paused the top right corner text shows 
“PAUSED” in inverted yellow text

. (dot): Change the colour of the background gridlines. The default colour is blue. Each 
time the dot is pressed, the colour changes; it cycles through: Blue, Magenta, 
Cyan, White, Red, Green, Yellow and then blue again.
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Display elements

This annotated screenshot illustrates the various elements on the display. 

The display elements on the top row are:

• 80Hz: Total 80-column screen width, in Hz. In this case an 80 Hz wide screen means each 
block is a 1 Hz Waterfall bucket

• /10Hz: Hz per horizontal division. There are always 8 horizontal divisions on the screen. 
This parameter displays the number of Hz per division. 

• 160ms: the update rate of the screen, or put another way, time per horizontal scroll row.

• /2s: The time per vertical division of the screen (distance between the horizontal blue dot 
grid lines) 

• FT8: The mode matching this update rate; various popular modes coded and when an 
update rate matches a mode, the mode name is written here. See below for the list of 
supported update rates. 

• 1510: Center frequency of the waterfall

• 1512.35: The most recent frequency measurement
NO SIGNAL: displayed at the top right when no audio signal is detected
PAUSED: displayed at the top right when the screen is paused by the space bar

NOTE: At very fast update rates, which are useful for displaying some features, the screen update
is too slow to display all the information and still be capable of updating fast enough. Therefore 
information is dropped. At 20ms per row (50 row updates per second) the only text on the display 
is “20ms” in the top left corner; the grid lines are still displayed. At 10ms (100 row updates per 
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second), even the grid lines are dropped; only “10ms” is written in the top left corner, and the 
yellow block drawn for the measured frequency. 

Update rates:

The available update rates (selected by the up/down arrow keys) are chosen to match various 
popular modes. For example, the symbol duration for FT8 is 160 ms. So “FT8” is written next to 
the vertical division rate, on the top row of the display. 

Update
rate (ms)

vertical
Div (s)

Matching
mode

Comment

10 1 Only display “10ms” in top left

20 1 Only display gridlines and “20ms” in top left

40 1

80 1

160 2 FT8

227 2 JT4

361 5 JT65

576 5 JT9

683 5 WSPR

Horizontal size (Hz):

The available horizontal screen size (selected by the left/right arrow keys) are chosen to cleanly fit 
the 80 columns display width.  

Screen
width (Hz)

Horizontal
Div (Hz)

12 1.5

20 2.5

40 0.5

80 1

160 2

320 4
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Demonstration of sliding frequency changes

A fun and useful demonstration of the capabilities of QDX and the Input Analysis application, is to 
investigate the FT8 tone change transition. We know according to the WSJT-X documentation that
to avoid splatter onto adjacent frequencies, WSJT-X makes a smooth transition between one tone 
symbol and the next. It’s nice to be able to check this using the Input Analysis screen. 

Here the screen width is 80Hz so each horizontal column is a 1 Hz bucket. The FT8 symbol 
change event is 2 tones (a frequency change of 12.5 Hz since the FT8 tone spacing is 6.25 Hz. 
The scroll rate is sped up the fastest rate, 10 ms per horizontal row (100 frequency measurements
per second). 

We see clearly that at the moment the FT8 tone changes, the measured frequency smoothly 
changes in the expected way from one tone to the next. 

Note that an even smoother transition could be made, by setting the “Minimum samples” 
parameter to 240 samples – this would result in slightly lower accuracy measurement but a 
smoother transition in tones. 

We’re talking here about tradeoffs in different aspects of performance; either way the performance
is excellent and QDX keeps up with the changes in input frequency! So this is a nice confirmation 
of the excellent performance characteristics of QDX. 
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6.8 CAT command test

The CAT command test application is a simple screen which allows you to test CAT commands. 
An annoying thing about typing CAT commands directly into a terminal emulator when QDX is in 
the normal operating mode, is that you cannot see the command you are typing, nor can you edit it
if you made mistakes. 

Here in this simple application, you can type the command (or commands) you wish to send to 
QDX in the yellow area of the bottom row. If you forget the trailing semicolon, the application adds 
one automatically for you. Then simply the command is shown in yellow in the left column, and the
command result in yellow in the right column. When the screen is full, it will scroll automatically. 
Naturally unrecognized CAT commands simply return an error ? as per the CAT specification. 

Cat command set

QDX implements a subset of the Kenwood TS-480/TS-440 CAT command set which is an old 
standard, but contains all the necessary commands for WSJT-X and other software to be able to 
control QDX, and is old enough that it is widely supported by most software packages. 

Additionally QDX provides an extended set of CAT commands Q0, Q1, Q2 and so on until QB. 
These commands allow a host program to set and get all of the parameters in the QDX 
configuration screen. Except for the default start-up operating frequency, all of these commands 
have effect only for the current operating session, they are not stored in EEPROM. If you need to 
permanently store the configuration parameters in EEPROM please use the Terminal 
Configuration screen. These commands could be useful for example, if you wish to provide a 
particular start-up script of CAT commands in your PC software to configure your QDX a certain 
way. 
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The following lists the commands and responses in alphabetical order:

AG: Get/Set AF Gain 

Set: Sets the audio gain. The actual gain setting is the supplied gain multiplied by 256. So for 
example command AG21; will set the gain to 21 x 256 = 5376. Note that the gain can also be 
set in the Terminal Configuration application. 

Get: Returns the audio gain, divided by 256. The default audio gain in QDX is 5,000 so the returned 
value is 19.

C2: Get/Set Signal Generator frequency

Set: Sets the Si5351A Clk2 output frequency (the signal generator).

Get: Gets the frequency of Si5351A Clk2 (the signal generator)

FA: Get/Set VFO A

Set: Sets VFO A value. Example: FA7030000; sets VFO A to 7.030MHz

Get: Returns the VFO A contents as an 11-digit number. Example: “FA;” returns “FA00007030000;”

FB: Get/Set VFO B

Set: Sets VFO B value. Example: FB7016000; sets VFO B to 7.016MHz

Get: Returns the VFO B contents as an 11-digit number. Example: “FB;” returns “FA00007016000;”

FR: Get/Set Receive VFO Mode

Set: Set VFO Mode: 0, 1, 2 correspond to VFO A, VFO B or Split respectively. This is the case for 
both the FR and FT commands (which are nominally Receive and Transmit VFOs) because in 
the QCX+ the VFO mode use does not correspond exactly to TS-480. 

Get: Get Receive VFO Mode: 0 means VFO A is used for receive (could be due to VFO mode 
being VFO A, or VFO Mode being Split); 1 means VFO B is being used for receive (must be 
VFO Mode B).

FT: Get/Set Transmit VFO Mode

Set: Set VFO Mode: 0, 1, 2 correspond to VFO A, VFO B or Split respectively. This is the case for 
both the FR and FT commands (which are nominally Receive and Transmit VFOs) because in 
the QCX+ the VFO mode use does not correspond exactly to TS-480. 

Get: Get Transmit VFO Mode: 0 means VFO A is used for transmit (must be VFO Mode A); 1 
means VFO B is being used for transmit (could be due to VFO mode being VFO B, or VFO 
Mode being Split)

FW: Get filter bandwidth

Get: Always returns 3200 meaning, 3200Hz (the QDX’s filter bandwidth). 

ID: Get radio ID

Get: Always returns 020 (Kenwood TS-480)
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IF: Get transceiver information (TS-480 format).

Get: Returns a composite information string containing the state of the transceiver, as follows 
(excluding command ID and ; terminator character):

• 11-digit operating frequency (VFO A or B, according to the VFO mode setting and transmit/
receive state

• 5 spaces
• 5-digit RIT frequency, as +/-9999Hz e.g. RIT up 200Hz returns “+0200” in this field
• RIT status: 0 = RIT OFF, 1 = RIT ON
• XIT status: always 0 because QCX+ has no XIT
• Memory channel bank number: always 0
• Memory channel number: always 00
• Transceiver status: 0 = RX, 1 = TX
• Operating mode: always 3 (CW)
• Receive VFO: 0 = VFO A, 1 = VFO B
• Scan status: always 0
• Split: 0 = Simplex operation (VFO mode A or VFO mode B), 1 = Split
• Tone: always 0
• Tone number: always 0
• Space character

MD: Get/Set operating mode

Set:  Set to 1 to set Lower Sideband (LSB) or any other value to set Upper Sideband (USB)

Get: Returns 3 (CW) if the mode is Upper Sideband (USB) which is the normal mode. Returns 1 if 
the mode is Lower Sideband (LSB). 

Q0: Get/Set TCXO reference frequency

Set: Set TCXO reference frequency. Only values between 24999000 and 25001000 are allowed. 
The setting is for the current operating session only and is not written to EEPROM.

Get: Get TCXO reference frequency.

Q1: Get/Set Sideband

Set: Set sideband; 1 sets Lower Sideband (LSB), any other value sets Upper Sideband (USB). The
setting is for the current operating session only and is not written to EEPROM.

Get: Get sideband; 0 = USB, 1 = LSB

Q2: Get/Set default operating frequency

Set: Set default operating frequency. The value IS written to EEPROM. 

Get: Get default operating frequency.

Q3: Get/Set receiver Gain

Set: Set receiver gain. The setting is for the current operating session only and is not written to 
EEPROM.

Get: Get receiver gain. The default value on Factory Reset is 5000.
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Q4: Get/Set VOX Enable

Set: Set VOX enable: 1 enables VOX, 0 disables VOX. The setting is for the current operating 
session only and is not written to EEPROM.

Get: Get VOX enable; 1 = Enabled, 0 = Disabled

Q5: Get/Set TX Rise Threshold

Set: Set TX Rise Threshold, which should be a percentage number between 0 and 99 (see 
description elsewhere in this manual). The default setting of 80 is normally appropriate. The 
setting is for the current operating session only and is not written to EEPROM.

Get: Get TX Rise Threshold value

Q6: Get/Set TX Fall Threshold

Set: Set TX Fall Threshold, which should be a percentage number between 0 and 99 (see 
description elsewhere in this manual). The default setting of 60 is normally appropriate. The 
setting is for the current operating session only and is not written to EEPROM.

Get: Get TX Fall Threshold value

Q7: Get/Set Cycle Min parameter

Set: Set Cycle Min parameter (see description elsewhere in this manual). The setting is for the 
current operating session only and is not written to EEPROM.

Get: Get Cycle Min parameter value

Q8: Get/Set Sample Min parameter

Set: Set Sample Min parameter (see description elsewhere in this manual). The setting is for the 
current operating session only and is not written to EEPROM.

Get: Get Sample Min parameter value

Q9: Get/Set Discard parameter

Set: Set Discard parameter (see description elsewhere in this manual). The setting is for the 
current operating session only and is not written to EEPROM.

Get: Get Discard parameter value

QA: Get/Set IQ Mode

Set: Set IQ Mode: 1 enables IQ Mode, 0 disables IQ Mode. In IQ Mode, the raw I & Q samples 
from the ADC are streamed directly to the USB Sound card. The setting is for the current 
operating session only and is not written to EEPROM.

Get: Get IQ Mode; 1 = Enabled, 0 = Disabled

QB: Get/Set Japanese Band Limits mode

Set: Set Japanese Band Limits mode: 1 enables Japanese band limits, 0 disables Japanese band 
limits. In Japanese Band Limits mode, QDX cannot transmit outside the allowed Japanese 
band limits. The setting is for the current operating session only and is not written to EEPROM.

Get: Get Japanese Band Limits mode; 1 = Enabled, 0 = Disabled
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RD: Set negative RIT offset amount

Set: Sets negative (down) RIT; for example “RD-200;” sets the RIT to -200Hz

RT: Get RIT status

Get: Returns RIT status: 0 = RIT off, 1 = RIT on

RU: Set positive RIT offset amount

Set: Sets positive (up) RIT; for example “RD150;” sets the RIT to 150Hz

RX: Set the radio into Receive mode immediately 

Set: Command RX; immediately puts the radio into receive mode. It is equivalent to TQ0;

SP: Get/Set Split mode

Set: Sets Split mode: 0 = OFF, 1 = ON. For example “SP1;” switches QDX to split mode

Get: Returns the Split state: 0 = OFF, 1 = ON. 

TQ: Get/Set transmit state

Set: Sets transmit state: 0 = RX, 1 = TX. For example “TQ1;” switches QDX to transmit mode

Get: Returns the transmit state: 0 = RX, 1 = TX. 

TX: Set the radio into Transmit mode immediately 

Set: Command TX; immediately puts the radio into transmit mode. It is equivalent to TQ1;
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6.9 Log file

This application is very useful for debugging CAT problems. The log file is stored in the EEPROM 
chip. The EEPROM chip capacity is 8 KB (Kilobytes) or 8,192 characters. However the 
configuration parameters also reside in EEPROM, so the available space for the log file is a little 
less: 8,064 characters, to be precise! When the log file is full, no further characters are written to it.

On opening the Log file application, the existing contents of the log file are displayed. When the 
screen is full, it will scroll automatically; you can use the scroll bar of the window to see text that 
has scrolled off the top of the screen if you wish. The current logging status is displayed in yellow 
in the bottom right corner. In this example, the status is “ALL” which means that all events are 
being logged. 

The available keyboard commands are:

CTRL-Q: Quit the log file application screen (logging remains active, if enabled)
C: Clear the log file
A: Log all events
E: Log only error events
N: No logging at all (logging is switched off)

In the log file, each event is written as one line. There are several times of log file entry:

• Errors have the line prefix “ERR:”

• CAT commands are shown (semicolon terminated) followed by the command result, if any. 
An unrecognized or invalid CAT command would be prefixed by the error code “ERR: “. 

• Radio state changes are indicated by the item being changed, followed by the new value. 
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Various examples from the screenshot above:

VFO.A 1840000 sets the VFO A frequency to 1.84 MHz
FA00001840000; CAT command from WSJT-X MHz
ERR: Band Error message “Band”

In this example, a CAT command was received from WSJT-X, to set the QDX to frequency 1.84 
MHz. The CAT command is “FA00001840000;” - Note that the entries in the log file are not quite in
chronological order, since the VFO update event is printed BEFORE the CAT command event; the
reason for this is that the CAT evaluation must be completed in totality before the CAT command 
log event takes place, because only then do we know if the CAT command was successful. The 
final entry is an error message “Band” because 1.84 MHz is in the 160m band and this is not one 
of the bands currently supported by QDX. 

VFO.A 7074000 sets the VFO A frequency to 7.074 MHz
FA00007074000; CAT command from WSJT-X MHz
Band 40m Sets the band to 40m

The operator then realizes his error setting QDX to 160m in the WSJT-X drop-down and chooses 
40m instead; this time the CAT command successfully sets frequency and band. 

IF; IF00007074000     +00000000003000000 ;

Here the “IF;” or Information request CAT command is received from WSJT-X and QDX replies 
with the CAT information string in the prescribed format. 

For reasons known only to itself, WSJT-X likes to ask for the information screen multiple times in 
quick succession even though the result is the same.
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The complete list of log events is as follows:

Event Explanation Example Comment

Power up Occurs every
power up

Start
1_00_001

Shows the start event and version number

Set VFO VFO frequency
change

VFO.A
7074000

VFO A is set to 7.074 MHz. VFO B is also available

Band
change

Band is set to a
new value

Band 40m An error is generated for bands not supported. 

TX Radio switched
to Transmit

TX Can be either by CAT command or by VOX

RX Radio switched
to Receive

RX Can be either by CAT command or by VOX

VFO
Mode

VFO mode set
to A, B, or Split

VFO Mode
A

An error is generated for any attempt other than A, B
or Split

Split   ON/
OFF

CAT Split on/off
command SP

Split ON

Clk2 Signal generator
frequency is set

Clk2
7075000

Gain Set audio gain Gain 25 Audio gain is set by the AG; CAT command

RIT Down RIT down CAT
command

RIT DN
500

RIT Up RIT up CAT
command

RIT UP
500

CAT Every CAT
command

IF; Every CAT command generates a log entry event

6.10 Factory reset

Selecting Factory reset at the main terminal menu, then answering the question “Are you sure?” 
with “Y”, results in the EEPROM configuration resetting to the factory default state, including 
restoring the TCXO reference frequency to 25000000 and erasing the log file (if any). Pressing 
any other key cancels the factory reset. 

6.11 Update firmware

Puts QDX into the QFU Bootloader mode, for firmware update. Please refer to the section of this 
manual describing the firmware update procedure. 

6.12 Exit terminal

As mentioned previously, exit terminal returns QDX to normal operating mode, processing 
incoming CAT commands as usual. The terminal should also be disconnected (or closed) so as to 
free up the serial port for use by WSJT-X or whatever software you are using – remember that 
only one PC software application can use the serial port at a time. 
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7 Performance measurements

Several QDX units have been measured; there are of course variations from one to another, due 
to component tolerances, toroid winding style, etc. The results presented here are for a sample 
QDX; all measured QDX were reasonably similar. 

7.1 Receive current consumption

The following chart shows receive current vs supply voltage, per band. There is not much variation
and it is fair to quote 100mA as the receive current. 

7.2 Transmit current consumption

The following chart shows transmit current vs supply voltage, per band.
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7.3 Power output vs supply voltage

Power output is consistent across bands. Operation at more than 6W output is NOT 
RECOMMENDED and may destroy the power amplifier transistors.

The following graph shows power output vs supply voltage for 40m operation, with the two 
alternative output transformer winding arrangements. 3:2 is less efficient but more suitable if you 
need to operate from a 12 – 13 V supply. 
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7.4 Output harmonic content

Equipment: 
QDX > QRP Labs 50-ohm dummy load kit > attenuator > Advantest R3361C Spectrum Analyzer.

Band 80m 40m 30m 20m

2nd harmonic -53 dBc -55 dBc -43 dBc -55 dBc

3rd harmonic -64 dBc -71 dBc -56 dBc -57 dBc

4th harmonic -70 dBc Undetectable Undetectable -70 dBc

5th harmonic -70 dBc -73 dBc -62 dBc Undetectable
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7.5 Unwanted sideband suppression

Measured using the QDX’s internal signal generator; unwanted sideband is 60-70 dB down. 

This is also seen on the QDX’s own terminal application, Audio sweep tool: 
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8. Resources

 For updates and tips relating to this kit please visit the QRP Labs QDX kit page http://qrp-
labs.com/qdx 

 For any questions regarding the assembly and operation of this kit please join the QRP 
Labs group, see http://qrp-labs.com/group for details

9. Document Revision History

1.00 09-Oct-2021 First draft version version 1.00

1.01 27-Oct-2021 Lots of corrections; and update for firmware 1.01

1.02 27-Oct-2021 Added note about IQ Mode not being applicable to WSJT-X and digi 
modes software; and that firmware update files downloaded from the 
QRP Labs website need to be unzipped before installation

1.03 28-Oct-2021 Added 0.33mm wire specification to sections 2.11 and 2.12

1.04 28-Oct-2021 Clarified T1 diagram 3:3 for 9V operation; and added notes to the text 
about remembering to wind 2 turns secondary for 12V operation.

1.05 08-Nov-2021 Minor typos corrected

1.06 10-Nov-2021 Added recommended comms port settings for Windows, which seem to
make CAT communications more reliable according to some user 
reports. 
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