
piHPSDR User’s Manual
For development version 2.3

Christoph van Wüllen, DL1YCF
email: dl1ycf@darc.de

January 2, 2024

ii

Copyright Notice:

Copyright (C) 2023 Christoph van Wüllen, DL1YCF.

This work is licensed under the Creative Commons licence CC BY-SA, ver-
sion 4 or later, so it can be freely distributed. This license also allows reusers
to distribute, modify and build upon the material in any medium or format,
as long as attribution is given to the creator. The license allows for com-
mercial use. If you modify or build upon the material, you must license the
modified material under identical terms.

Disclaimer. The manual has been written with the intention that it is
useful. It is quite clear that it still contains errors, therefore it is stressed
here that it comes without any warranty. The reader is hereby explicitly
warned that through wrong use of an SDR program such as piHPSDR, it is
possible to damage the radio hardware.

Trade marks. Registered trade marks are not marked with a sign in this
manual. From the absence of a trademark sign, it cannot be concluded that
a mark you find in this manual is not registered or not protected.

The author:

Christoph van Wüllen (DL1YCF) has contributed a lot to piHPSDR in the
last few years, this manual refers to the code in his github account

https://github.com/dl1ycf/pihpsdr

where the LATEX ,,source code” of this manual, together with all figures in
.png format, can be found in the release/LatexManual directory. At this
moment this code has significant developed compared to the piHPSDR code
in John Melton’s master repository, but there is still hope that both versions
can be merged in the future, although this will be hard work.

If you think you can improve the manual, you are welcome. Simply fork the
above repository and make a pull request, or (this is the recommended way)
write an email to the author: dl1ycf@darc.de

Contents

1 Introduction 1

2 Starting piHPSDR for the first time 5

3 Main window layout 13

3.1 One or two receivers . 13

3.2 Spectrum scope options . 15

3.3 Zoom and Pan . 16

3.4 The Hide button . 17

3.5 Window areas . 18

3.6 Mouse clicks in the main window 20

3.7 VFO bar and status indicators 22

3.8 Meter section . 25

4 The Main Menu: introduction 27

4.1 The Exit Menu . 29

4.2 The About Menu . 31

5 The Main Menu: Radio-related menus 33

5.1 The Radio Menu . 33

5.2 The Screen Menu . 40

iii

iv CONTENTS

5.3 The Display Menu . 44

5.4 The Meter menu . 46

5.5 The XVTR (Transverter) Menu 47

6 The Main Menu: VFO-related menus 51

6.1 The VFO menu . 51

6.2 The Band menu . 53

6.3 The BndStack (Bandstack) menu 54

6.4 The Mode menu . 55

6.5 The Memory menu . 56

7 The Main Menu: RX-related menus 59

7.1 The RX Menu . 59

7.2 The Filter menu . 62

7.3 The Noise Menu . 64

7.4 The AGC Menu . 66

7.5 The Diversity Menu . 67

8 The Main Menu: TX-related menus 69

8.1 The TX Menu . 69

8.2 The PA Menu . 73

8.3 The VOX Menu . 76

8.4 The PS (PureSignal) Menu . 77

8.5 The CW Menu . 83

9 The Main Menu: menus for RX and TX 87

9.1 The DSP (Signal Processing) Menu 87

9.2 The Equalizer Menu . 89

CONTENTS v

9.3 The Ant (Antenna) Menu . 90

9.4 The OC (OpenCollector) Menu 92

10 The Main Menu: controlling piHPSDR 95

10.1 The Toolbar Menu . 95

10.2 The RigCtl (Rig control, or CAT) Menu 99

10.3 The MIDI Menu . 101

10.4 The Encoders Menu . 107

10.5 The Switches Menu . 110

A List of piHPSDR ,,Actions” 113

B The MULTI encoder 139

C piHPSDR keyboard bindings 141

D piHPSDR CAT commands 143

E Connect a Morse Key 145

F piHPSDR and digimode programs 155

G Compile-time options 167

H GPIO Lines for Controllers, CW, PTT 171

I RaspPi: Activating I2C 177

J RaspPi: binary piHPDSR installation 179

K Linux: piHPDSR install from sources 183

vi CONTENTS

L MacOS: piHPDSR install from sources 189

Chapter 1

Introduction

piHPSDR is a program that can operate with software defined radios (SDRs).
As a graphical user interface, it uses the GTK-3 toolkit, while the actual sig-
nal processing is done by Warren Pratt’s WDSP library. Thus, piHPSDR
organizes the transfer of digitized radio frequency (RF) data between the ra-
dio hardware and the WDSP library, the transfer of audio data (either from
a microphone or to a headphone), as well as the processing of user input
(either by mouse/touch-screen, keyboard, or external ”knobs and buttons”),
and the graphical display of the RF data. piHPSDR is intended to run on
different variants of Unix. It runs on all sorts of Linux systems, including a
Raspberry Pi (hence the name piHPSDR), but equally well on Linux desk-
top or laptop computers, and on Apple Macintosh (Mac OSX) computers
which have a Unix variant under the hood. The present author is not aware
of piHPSDR running under the Windows operating system, although with
environments such as MinGW, this should be possible.

Although piHPSDR can be operated entirely by using mouse and keyboard as
input devices, many users prefer to have physical push-buttons and/or knobs
or dials. To this end, piHPSDR can control push-buttons and rotary encoders
connected to the GPIO (general purpose input/output) lines of a Raspberry
Pi. At least two generations of such controllers have been put on the market
by Apache labs, and I know of several projects where home-brewn controllers
have successfully been made. As an alternative, MIDI devices can be used for
user interaction. For desktop/laptop computers that do not have GPIO lines,
MIDI offers an easy-to-use possibility of having push-bottons and dials that

1

2 CHAPTER 1. INTRODUCTION

control piHPSDR. Apart from homebrew projects in which a micro-controller
such as an Arduino Micro controls the actual buttons/knobs and acts as a
MIDI device to the computer to which it is connected via USB, there are
low-cost so-called ”DJ controllers” (DJ stands for disk jockey) from various
brands which have successfully been used with piHPSDR. A third possibility
to control piHPSDR is via a serial interface through CAT (computer aided
transceiver) commands. The CAT model used by piHPSDR is based on the
Kenwood TS-2000 command set with lots of PowerSDR extensions.

Using a touch-screen instead of a mouse offers the possiblity to put the ac-
tual radio hardware together with a Raspberry Pi running piHPSDR and an
assortment of buttons/knobs into a single enclosure. This way, one can build
an SDR radio which can be operated like a conventional analog one.

The piHPSDR program has been written by John Melton G0ORX/N6LYT.
It is free software that is licensed under the GNU (free software foundation)
general public license. Many other radio amateurs have contributed to the
code. A lot of extensions and improvements have been added by myself,
therefore this document refers to the version of piHPSDR that can be found
on my github account https://github.com/dl1ycf/pihpsdr.

Because piHPSDR can be used on many different types of computers, and
because operating systems change rather quickly over time, I generally do not
recommend to do a ,,binary installation” although such a bundle is provided
in the repository (for the RapsberryPi only) and the process is decribed in
Appendix J. Instead, my personal recommendation is to build piHPSDR
from the sources, only this procedure guarantees compatibility of the final
program with your operating system. Shell scripts for a semi-automatic
installation have been provided, and the procedure is described in Appendix
K for Linux (including RaspPi) computers and in Appendix L for Mac OSX.
This manual starts in its first chapter with the first invocation of a freshly
compiled piHPSDR.

Within this manual, we shall use a typewriter font in red color if we refer to
a text or a button within a menu of within the VFO bar. piHPSDR menus
and commands are indicated through a typewriter font printed in blue. The
author hopes that this improves readability. In some cases, if the name of
a command or menu is written on the screen, you may find the same string
both typed in red and blue in the description, depending on whether the text
refers to the command in an abstract sense or to the string as it can be found

3

on the screen. This may be confusing upon first reading, but I shall try to
follow the coloring convention as laid out here.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Starting piHPSDR for the first
time

Let us assume you have an SDR (say, an ANAN-7000 or a HermesLite-II)
powered up and connected to an antenna, and you have piHPSDR installed
on a computer (say, a Raspberry Pi or an Apple Macintosh), the first thing
to do is to establish a proper connection between the computer and the
radio. Although advocated at many places, I do highly recommend against a
WiFi connection. WiFi routers often use optimizations where they hold back
data packets for a given client for a while, to be able to send a collection of
them in a burst. While this certainly optimizes the through-put because it
minimizes clear-channel arbitration events, such jitters are desastrous in SDR
operation. The safest way of connecting the radio and the computer is to
have a managed switch with a built-in DHCP server, and to connect both the
computer and the radio with a suitable cable to the switch. If the computer
has both a RJ45 jack for an ethernet cable, and a WiFi interface, my personal
recommendation is to use WiFi to connect the computer to the internet, and
use a single direct cable plugged into the RJ45 jacks of the computer and of
the radio. This is a little bit tricky since both the computer and the radio
have to be set to a fixed IP address (e.g. computer: 192.168.1.50, radio:
192.168.1.51) with the same netmask. However, once this has been done,
this is the safest connection with no perturbations from elsewhere.

If the piHPSDR program is started for the first time, it opens a window
that looks like Fig. 2.1. Besides stating a version number and when piH-

5

6 CHAPTER 2. STARTING PIHPSDR FOR THE FIRST TIME

Fig. 2.1: piHPSDR screen while completing the wisdom plans.

PSDR was built, the list of optional features is documented (compile-time
options, in this case GPIO, MIDI, SATURN) as well as the audio module
used (here: ALSA) for attaching headphones or microphones to the host
computer running piHPSDR. Information about compile-time options and
the audio modules available are given in Appendix G.

What is important here that you have to wait. This only applies to the very
first time you start piHPSDR. On CPUs with a rather simple instruction set
(like the ARM processor in the Raspberry Pi, or the Apple Silicon processor
in recent Macintosh computers), this so-called planning step is quite fast. For
example, on my Apple M2 Mac mini, this step only takes 6 seconds, and you
have to wait for 34 seconds on a RaspberryPi 4. On the contrary, on CPUs
with complex instruction sets, more planning is necessary: on my other Mac
mini with a 3 GHz x86 processor, it takes 16 minutes! But note this has only
to be done once, in subsequent starts of piHPSDR, the wisdom will simply
be read from the file created during the wisdom plans. These plans contain,
for a large number of dimensions, the fasted way how to perform FFTs (fast
Fourier transformations) on the given CPU. When the wisdom is secured,
piHPSDR tries to detect a radio on the network. If everything went well
with the network connection, you then see a screen with a discovery menu

7

Fig. 2.2: A radio has been discoverd. You are ready to start it.

(Fig. 2.2).

It is possible that the Start button is deactivated and shows another text.
In Use at this point means that the radio is already in use (connected by
another SDR application), while Incompatible denotes that the radio is not
compatible with this version of piHPSDR. This is only the case if piHPDSR
runs natively on the CM4 module inside the new Anan Saturn/G2 radios and
the FPGA firmware is known to be too old for direct (XDMA) data transfer
between the CM4 module and the FPGA. Updating the FPGA firmware to
the latest version should help in this case.

If more than one radio is available, or a radio can be connected via more than
one network interface, you will see several Start buttons. If you see at least
one Start button, you can start the corresponding radio simply by clicking
that button. But let us first explain the purpose of the other buttons! Easiest
to explain is the Exit button, this will simply terminate the program. Most
likely, you may want to go into the Protocols menu sooner or later. By
default, piHPSDR tries to discover the presence of a radio using all protocols
known to piHPSDR. However, if you know that your radio, for example,
uses P2 (Protocol 2), then trying to discover a P1 (Protocol 1) radio is just
a waste of time. So if you know which types of radio you want to connect to,

8 CHAPTER 2. STARTING PIHPSDR FOR THE FIRST TIME

you can enable (only) these in the Protocols menu. The available protocols
are

Protocol 1 This is the ”original” HPSDR protocol.

Protocol 2 This is the ”new” HPSDR protocol.

Saturn XDMA This is used to talk to a Saturn FPGA through the internal
XDMA interface. Only available if piHPSDR is compiled
with the SATURN option.

USB OZY This is used to talk to a radio using the legacy USB OZY
interface. Only available if piHPSDR is compiled with the
USBOZY option.

SoapySDR This is used to talk to a radio through the SoapySDR li-
brary, for example to an AdalmPLUTO. Only available if
piHPSDR is compiled with the SOAPYSDR option.

STEMlab This is used to connect to RedPitaya based SDRs through
the WEB interface. Only available if piHPSDR is com-
piled with the STEMLAB DISCOVERY option. Starting the
radio using this protocol is a two-step process: first, the
RedPitaya’s WEB interface is located, and the Start but-
ton then starts the SDR app on the RedPitaya. Then,
piHPSDR tries to connect to this SDR app and upon suc-
cess offers a new Start button to start the radio. If the
RedPitaya is exclusively used as a radio, it is recommended
to auto-start the SDR app when the RedPitaya is powered
up. In this case, the STEMlab protocol is not used, be-
cause the SDR app can be started through Protocol-2.

Autostart This is a very useful option. It indicates that if exactly one
radio has been found, it is automatically started. So in
normal operation, when starting piHPSDR subsequently,
and all settings are still valid, the radio is started without
user intervention. If this option is activated and one ra-
dio is present, you will not see this menu, so in order to
make further changes here, you have to disconnect the ra-
dio from the ethernet cable, start piHPSDR until you see

9

this menu, and update the Protocols settings. Then you
can re-discover using the Discover button.

Sometimes piHPSDR needs to know the IP address of the radio. This is,
for example, the case for the STEMlab discovery described above. In such a
case the IP address in numerical form (xxx.xxx.xxx.xxx) can be entered in
the box with the label Radio IP Addr:. If a legal IP address is contained
in this box, protocol-1 and protocol-2 discoveries will also send to the IP
address specified, in addition to the standard broadcast discovery packets
which can only reach radios on the same network segment. With a known IP
address, one can connect to radios which are not on the same subnet as the
computer, in principle you can connect to any radio on the world provided
it is on the internet. However, the original HPSDR standard states that a
broadcast packet must be used, so several radios won’t reply. On the other
hand, there are some radios such as a RedPitaya or a HermesLite-II which
allow being discovered by such a routed packet.

The Discover button re-starts the discovery process. This is useful if the
radio has been powered up too late and was not yet ready when piHPSDR
was started. Simply press Discover to start another attempt.

The combo-box (pop-down menu) to the left of the Discover button lets you
choose which type of GPIO controller you have attached to the computer.
This menu is only available if piHPSDR has been compiled with the GPIO

option, which is not the case on desktop/laptop computers. The menu lets
you choose between

No Controller Choose this if no GPIO controller is wired to your Rasp-
berry Pi. This is the default when you first start piHPSDR.

Contoller1 Choose this if you have the original piHPSDR controller,
called the Controller1 in the rest of this manual.

Controller2 V1 This option is valid for some early prototypes of the ”ver-
sion 2” controller with single encoders. This special case is
not covered in this manual.

Controller2 V2 Choose this if you have a ”version 2” piHPSDR controller
with double encoders on a single shaft. This controller is
denoted Controller2 in the rest of this manual.

10 CHAPTER 2. STARTING PIHPSDR FOR THE FIRST TIME

Fig. 2.3: The radio with two RX. Sliders and Toolbar are not on display by
default when using a controller.

G2 Front Panel Choose this if you have an ANAN G2 radio with a built-in
controller.

Attention. Be sure to choose a controller only if such a controller is actually
connected to your Raspberry Pi. If you choose, for example, a controller
which uses an I2C expander for the switches, but no I2C interface is present
on your Raspberry Pi, the program my hang when trying to open the I2C
connection.

All settings (protocols, controller, IP address) made in this menu are stored
in the global (radio- indepentend) settings and are restored when piHPSDR
is started the next time.

If all went well, a radio could be discovered and you hit the Start button,
the radio is started, and if this succeeds, you see something like shown in
Fig. 2.3.

The bottom of the window looks different (more controls) if you have chosen
No Controller in the preceeding menu. You see two receiver panels stacked
vertically, both of them having a spectrum display and a waterfall area. At
the top, just below the window title, you have the VFO bar which contains

11

information on the frequencies of the two VFOs A and B, as well as lots of
further information, to be explained later. At the top right, there are two
buttons Hide and Menu which will be explained in the next chapter. To the
left of these two buttons, there is the meter bar which by default is a digital
S-meter. At this point, you have started piHPSDR successfully for the first
time.

12 CHAPTER 2. STARTING PIHPSDR FOR THE FIRST TIME

Chapter 3

Main window layout

3.1 One or two receivers

At the end of the previous chapter (Fig. 2.3), there were two receiver panels
in the piHPSDR window, stacked vertically, and both including a spectrum
scope (the green-coloured noise floor) and a waterfall. The waterfall area is
completely black in the above picture since there was no RF signal. piHPSDR
can be switched between having one or two receivers in the Radio menu. If
there are two receivers (called RX1 and RX2), one of the two is the active
receiver. If you look closely at the above picture, you will note that the
spectrum scope of the lower (RX2) panel is shaded, while it is in bright
colour for RX1. This indicates that RX1 is currently the active receiver. By
simply clicking into the panel of the other (inactive) receiver, either with a
mouse or on a touch screen, the formely inactive receiver becomes active.

Many conventional rigs with two independent receivers discriminate between
the main and the sub receiver. It is important that this is not the case for
piHPSDR. In piHPDSR, both receivers are largely equivalent. For exam-
ple, if you start transmitting in normal (non-split) mode, the TX frequency
matches the frequency of the active receiver, no matter whether this is RX1
or RX2. Likewise, in split mode, the TX frequency matches the frequency of
the non-active receiver. Most of the receiver-specific controls, for example ad-
justing the AF volume or the AGC gain, refer to the current active receiver.
If piHPSDR runs with two receivers, RX1 is always controlled by VFO-A

13

14 CHAPTER 3. MAIN WINDOW LAYOUT

while RX2 is controlled by VFO-B. The VFO settings not only include the
frequency but also the current mode (e.g. LSB or CWU), the filter setting,
the band and bandstack setting, whether RIT is enabled or not, and the RIT
offset. So changing the RIT value only changes it for the active receiver. If
you want to change the RIT value for RX2 while RX1 is the active receiver,
you have to make RX2 active, change the RIT value and then make RX1
active again.

RX1 and RX2 are largely independent. They can receive on different bands.
They can receive from different antennas provided the radio has two RF
frontend with two analog-to-digital converter4s (ADC, as most modern radios
do. In this case, one usually assigns the first ADC (ADC0) to RX1 and the
second ADC (ADC1) to RX2. This can be done in the RX menu.

By default, if there are two receivers, they are vertically stacked, with RX1
in the upper part and RX2 in the lower part of the display. This can be
changed in the Screen menu to horizontal stacking, where RX1 is in the left
half and RX2 in the right half of the display. Changing the stacking trades
vertical against horizontal resolution, of course.

Fig. 3.1: piHPSDR with a single RX and all controls (Zoom/Pan, Sliders, Tool-
bar) at the bottom.

Fig. 3.1 picture shows, for demonstration purpose, a piHPSDR window with

3.2. SPECTRUM SCOPE OPTIONS 15

a single receiver. The RX panel only contains a spectrum scope with a white
line and no waterfall (this can be changed in the Display menu. In addition,
you see the toolbar with eight buttons at the lower edge of the window,
and above it an area with sliders. Showing the sliders is the default (and
necessary) if there is no GPIO or MIDI controller attached, since then these
sliders are the only way to change, for example, the AF volume. If there is
only one receiver, it is controlled by VFO-A. VFO-B then actually controls
nothing (except the TX frequency in split mode), but the data stored in
VFO-B can be quickly used, for example by copying VFO-B to VFO-A (the
A<B command), or by swapping the two VFOs (the A<>B command).

3.2 Spectrum scope options

You have already seen two different spectrum scopes: in the first picture, the
spectrum was a filled green area, while in the last picture, there only was a
white line (this is similar to what you would see on a spectrum analyzer).
This can be adjusted to your personal preference in the Display menu (see
below). There are two options which you can enable or disable, such that
there are four different outcomes. The first option is the ,,Filled” option
which discriminates between a line spectrum and a spectrum which is filled
below the line. In the picture below, the first and third example have no
filling, while the second and fourth spectrum are filled:

Fig. 3.2: Display options for the spectrum scope.

Then there is the ,,Gradient” option. Without this option, the spectrum is
displayed in white colour. With the gradient option, the colour changes from
green over yellow towards red depending on the signal strength (red colour

16 CHAPTER 3. MAIN WINDOW LAYOUT

is reached for S9). The above picture demonstrates the four possible combi-
nations, and in the Display menu, you can make your choice. This setting
refers to both receivers when there are two. Note that the TX spectrum can
be a filled one or a line spectrum (to be specified in the TX menu), but that
there is nov gradient option.

3.3 Zoom and Pan

Fig. 3.3: The spectrum scope of Fig. 3.1 with a large Zoom value.

The width of the RX spectrum equals the sample rate of the receiver. This
means that if you use, say, a sample rate of 96 kHz for a receiver, its spectrum
will be 96 kHz wide, which may encompass a larger part of the spectrum than
you are interested in. As a drawback, the part which is relevant to you may
look a little bit compressed. This is where the Zoom command comes in.
The zoom value can adopt integral values between 1 (no zoom) and 8. In the
latter case, only 1/8 of the overall spectrum is displayed on the screen. In the
picture below, you see that the RX scope is only 12 kHz wide (which is 1/8
of the RX sample rate, 96 kHz in our example). Note that what is displayed
is in full resolution. Internally, a spectrum with 8 times the number of pixels

3.4. THE HIDE BUTTON 17

of the screen width is created and only a part of it is displayed. The zoom
value can be changed using the Zoom slider (at the left edge below the RX
panel).

When using a zoom value larger than one, this means that a spectrum with
more pixels than the actual screen width is produced. One can select which
part of that area is displayed on the screen with the Pan slider (below the
RX panel at the right side). Normally (Zoom=1), the VFO dial frequency is
exactly in the middle of the RX scope, and marked with a thin red line. On
the picture above, the dial frequency (14.100 MHz) is found in the RX panel
close to the left edge, and this has been done by moving the Pan slider.

Note that the TX spectrum scope always has a fixed spectral width, namely
24 kHz in non-duplex mode when the TX spectrum scope is shown in the
main window, and 6 kHz in duplex mode when the TX spectrum is shown
in a small separate window.

3.4 The Hide button

Fig. 3.4: piHPSDR window with the Toolbar/Sliders/Zoom area ,,hidden”.

On small screens, space is scarce. This in in particular true for the vertical

18 CHAPTER 3. MAIN WINDOW LAYOUT

space if one used two RX panels and both with a spectrum scope and a
waterfall. I this case, it may be hard to actually watch the signals if the
screen is small. This is where the Hide button comes in. Clicking on this
button ,,hides” the toolbar and slider area:

The text on the button then changes to Show, and clicking this button again
will then return to the previous display.

3.5 Window areas

Look again at Fig. 3.1! Starting from the top, you see the title bar of the
window. This bar is not visible in full screen mode, where the size of the
piHPSDR window matches the display size. The title bar contains some
basis information about the radio, e.g. its type, the protocol used, the IP
and the hardware address of the radio. If you are really interested in this
information, it is recommended to open the About menu.

Between the title bar and the RX spectrum scope, you see a small vertical
area, most of which is taken by the VFO bar (containing the large frequency
dials). At the rightmost end of this area, you see two buttons Hide (already
discussed) and Menu. Clicking on the latter button opens the main menu,
which will be discussed in detail in the following chapters. The Menu button
is really important, since it enables access to one of the menus used for
configuring piHPSDR. Between the VFO bar and the Hide/Menu buttons, you
see the meter area where you find the S-meter (during RX) and information
about output power, SWR, etc. during TX.

Below the RX spectrum scope, you see the Zoom/Pan area with the Zoom
and Pan sliders, as already discussed. This area can be ,,hidden” with the
Display menu to save some vertical space. Below the Zoom/Pan sliders you
see a larger Sliders area containing several sliders for adjusting AF volume,
TX drive level, RX AGC threshold, etc. Although the Sliders area can also be
hidden via the Display menu, you should not do so unless you have a GPIO
or MIDI controller which knobs that you can asssign to the slider functions.
This is so since for normal operation, having access to the sliders is vital.
Remember that for temporarily enlarging the space for the RX panel, there
is the Hide button!

If you have a GPIO or MIDI console, and, say, assigned a knob there to

3.5. WINDOW AREAS 19

Fig. 3.5: A pop-up attenuation slider.

control the AF volume, then turning the knob will auto-magically also move
the AF slider if its on display (that is, if the sliders area is not hidden). If
you turn a knob for which function there is slider on display, either because
the slider area is hidden or because this function does not have a slider in
that area, then a graphical slider will temporarily pop up in the middle of
the window to inform you about the changes you have made. To give one
example, a knob at a MIDI console has been assigned to the RF attenuator
(Atten function, see Appendix A), which controls the step attenuator in the
RF front-end (if there is one). As long as the sliders are on display, the Att

slider in the right part of the slider area moves when turning the knob. But
when the sliders are not displayed, then a slider image pops up on the middle
of the screen, and the bar contained therein moves when turning the knob,
and the numerical value is displayed as well (Fig. 3.5). Such a pop-up slider
always occurs if a knob on the GPIO or MIDI console is turned and no slider
associated with the value changing is on display.

At the very bottom of the window, there it the toolbar. This can also be
individually hidden/shown via the Display menu. The toolbar consists of
eight ,,buttons” which you can click with a mouse or on a touchscreen. If
you are using the original (V1) piHPSDR GPIO controller, is has eight push

20 CHAPTER 3. MAIN WINDOW LAYOUT

buttons below the screen and pressing those is equivalent to clicking the
buttons on the screen. You might still want to keep the toolbar on display
even if you are using the Controller1 since it shows you to which functions
the buttons are actually assigned. This assignments consists of six ,,layers”
(0 through 5). The rightmost button is hard-wired to the Function action
which cycles through the layers. The button text includes the number of the
currently active layer, and the button text of the other buttons reflect the
functions assigned to the buttons in the current layer.

Bonus for mouse users only. For the first seven toolbar buttons, there
is no difference if you do a primary or secondary mouse click on that button
(that is, it does not matter whether you use the left or right mouse button).
But for the rightmost toolbar button, a normally mouse click cycles forward
through the layers, while a secondary mouse click cycles backwards. If you
use a V2 or G2-frontpanel GPIO controller or a MIDI console, then you can
also map this function (FuncRev) to a spare button.

3.6 Mouse clicks in the main window

The main window ,,accepts” mouse or touchscreen click events. Some of
them come from the standard handlers of the GUI. It is clear, for example,
that clicking the Hide or Menu buttons, as well as clicking one of the toolbar
buttons, will activate the function associated with these buttons. Further-
more, the sliders (and the squelch enable/disable checkbox) in the sliders
and Zoom/Pan are are operated as usual. But there are additional functions
coded into piHPSDR:

If there are two receivers, a mouse click (press and release) into the panel of
the non-active receiver makes it active. On the other hand, a mouse click in
the panel of the active receiver changes the VFO frequency of that receiver
to the value clicked on. This means, if you see a signal in the spectrum scope,
click on that signal and your VFO will move (jump) to that signal. Note the
VFO frequency will be rounded to the next multiple of the VFO step size
when jumping by a mouse click or touch screen press.

The second option to change the VFO frequency of the active receiver is to
click (and hold) into its panel, then drag the mouse to the left or to the
right, and then release the button. This will shift the VFO frequency by the

3.7. VFO BAR AND STATUS INDICATORS 21

amount dragged, it makes no difference where the first click actually occured,
only the difference in horizontal position between click and release is used.
You must drag at least three pixels so there is clear discrimination between
a ,VFO jump (click then release) and a VFO drag (click, drag, and release)
operation. Finally, the VFO frequency of the active receiver can be changed
by the scroll wheel of the mouse, if there is any. Using the scroll wheel lets
the VFO frequency move in multiples of the VFO step size, while mouse
dragging can also be used for finer tuning.

Clicking into the VFO bar opens the FREQ (VFO) menu, for the VFO-A if
clicked into the left half of the bar, and for VFO-B if clicked into the right
half. This menu not only offers the possibility for direct frequency entry, but
also lets you alter the RIT/XIT or VFO step size, or alter the Lock, Duplex,
CTUN, or Split states. So a simple click in the VFO bar gets you quick
access to often-used functions.

Clicking in the meter section (between the VFO bar and the Hide/Menu
buttons) opens the METER menu, where you can change the meter properties
(see below).

When operating with a mouse, there are usually two mouse buttons, the
primary button (for right-handed mouses, this is usually the left button) and
a secondary one. Secondary mouse clicks are difficult to apply with a touch-
screen. Although there are touch-screen drivers which convert long presses
to secondary clicks, they generate, for a long press, a primary click first and
a secondary one later, so it is not possible to generate a single ,,secondary
press” event. But for the benefit of mouse users, secondary mouse clicks are
handled in a special way:

A secondary click into the VFO bar will open the BAND menu, so a band
change can be made with really few mouse clicks. Likewise, a secondary
click into the panel of a receiver (no matter if it the active or the non-active
one) will open the RX menu for that receiver. This can be used to change the
settings of a non-active receiver without making it temporarily active. In the
same way, a secondary click in the TX panel will open the TX menu.

22 CHAPTER 3. MAIN WINDOW LAYOUT

Fig. 3.6: The VFO bar

3.7 VFO bar and status indicators

Fig. 3.6 shows the VFO bar layout in more detail. The example shown is
a VFO bar whose width is 745 pixels and thus suitable for screens that are
1024 pixels wide (or more), since the meter area has a fixed width of 200
pixels, and the Hide/Menu buttons are 65 pixels wide. This layout is denoted
Large dials for 1024px windows, as to the choice of VFO bar layouts,
see the description of the Screen menu.

The large dials indicating the frequencies of VFO-A and VFO-B are easily
recognized. The number to the left of the decimal point is the MHz part of
the frequency, the three large digits to the right of the decimal point is the
kHz part, and the last three (smaller) digits offer sub-kHz resolution. You
may wonder why there is so much space to the left of the frequencies. This
is so because with the advent of the QO-100 satellite, frequencies above 10
GHz can be used (with the transverter bands) and therefore eleven digits are
needed!

Apart from the frequencies, you see a lot of text, most in light grey colour.
As a general rule, a text in grey colour indicates a feature that is currently
disabled, while features currently active are normally shown in yellow and
sometimes in red.

At the top left corner of the VFO bar, the mode and filter of the currently
active receiver is displayed. In Fig. 3.6, the text is USB Var1 which indicates
that the mode is USB using the Var1 filter with variable width (see the
Filter menu). For the CW (CWU and CWL) modes, the CW speed (in
wpm) and the side tone frequency (in Hz) is stated as well. For CW, the
filter size may be appended by a ,,P”, which indicates whether the CW audio
peak filter (see the Filter menu) is effective on top of the normal filter. For
the FMN mode, an indicator of the form C=xxx.y is added if CTCSS is
enables, and then xxx.y shows the CTCSS frequency.

Now we continue line by line, from left to right and find the string AGC med

3.7. VFO BAR AND STATUS INDICATORS 23

printed in yellow. This means that automatic gain control (AGC) is effective
in the active receiver, and that the AGC time constant is intermediate. Pos-
sible values for the time constant are Long, Slow, Medium and Fast which
can be selected in the AGC menu. Here one can also disable AGC, in this case
the VFO bar shows AGC off in grey colour.

Continuing to the left, we see the noise reduction settings, all printed in grey
(that is, they are not effective). This can be changed in the Noise menu. We
have two different noise reduction capabilities NR1 and NR2, these strings are
printed in yellow instead of the grey NR if they are effective. There are also
two different noise blankers NB1 and NB2, the automatic notch filter ANF and
the spectral noise blanker SNB. Besides enabling/disabling these functions,
there are further parameters you can tweak in the Noise menu.

The next strings whether Diversity reception is enabled or disabled (DIV), or
whether an equalizer is effective EQ. Since there is a separate equalizer for the
RX and TX audio chain, the equalizer indicator, if it is effective, not only
turns yellow but reads RXEQ while receiving and TXEQ while transmitting.
This means, if only the TX equalizer is enabled, the indicator will show a
grey EQ while receiving and a yellow TXEQ while transmitting.

The last indicator in the top row is CAT which indicates if the CAT module
(see the RIGCTL menu) has accepted at least one connection. In total, piH-
PSDR can be CAT-controlled simultaneously by five different sources, two
of them using a serial line and three of them a TCP connection.

The indicators in the middle, between the VFO dials, are related to trans-
mitting. CMPR indicates if a speech processor (compressor) is enabled, if so, it
prints in yellow, followed by a number between 1 and 20 indicating the com-
pression value in dB. PS indicates whether adaptive pre-distortion (,,PureS-
ignal”) is enabled, PS settings can be made in the PS menu. VOX indicates
whether VOX (voice control) is enabled. VOX means that if the microphone
delivers an amplitude above a certain threshold, the radio is automatically
put into TX mode. Enabling/Disabling VOX and setting the correct thresh-
old can be done in the VOX menu. Finally, DUP indicates whether duplex mode
is active. In duplex mode, the receiver(s) continue to work during transmit.
Duplex mode when using the same antenna for RX and TX is no fun: you
not only hear your own signal with a delay (from the cross-talk at the TRX
relay), but this cross-talk signal is usually so strong that it leads to ,,AGC
pumping”, so your receiver is virtually deaf during the first second after

24 CHAPTER 3. MAIN WINDOW LAYOUT

TX/RX transition. For satellite operation, on the other hand, duplex mode
is very convenient. Here you usually have two separate and well-decoupled
antennas for RX and TX.

The bottom line of the VFO bar indicators are related to the VFO status.
If the Locked string is red, it indicates that the VFO is locked and will not
accept changes. There is a LOCK action which toggles the LOCK status and
which can be assigned to a toolbar button or a push-button on a GPIO or
MIDI console, but the Lock status can also be set/unset via the FREQ menu,
accessibly by the main menu window, or just by clicking into the VFO bar.

The next indicator in the bottom line indicates the Zoom factor. If the Zoom
factor is 1, the indicator is grey, otherwise it is yellow and also indicates the
factor. Then there is a string CTUN which indicates whether the CTUN (,,click
to tune”) mode is off or on (the string is yellow in the latter case). The step
size of the VFO controlling the active receiver is displayed next, this string
is always yellow.

The split status is displayed by the next indicator, which is red in split mode.
If split mode is off, transmitting is done on the frequency and the mode of
the active receiver (if there are two receivers), or on the frequency/mode
of VFO-A (if there is only one receiver). If split mode is on, transmitting
occurs on the frequency/mode of the non-active receiver (if there are 2) or
on VFO-B (if there is only one receiver).

The next indicator shows the SAT (satellite) mode, which can be off (then
the indicator reads SAT in grey), or which can be SAT or RSAT (then the
indicator displays this string). Once SAT mode is engaged, the two VFOs
are tied together such that any frequency change of one of the two VFOs also
applies to the other VFO. This is the best way to do cross-band operation
with, e.g. the QO-100 satellite which is at a fixed position. In RSAT mode,
a frequency change of one of the VFOs is applied to the other VFO with an
opposite sign (so if you move up VFO-A by 2 kHZ, then VFO-B moves down
by the same amount). This is what one needs for low-flying satellites which
have inverting transponders which offer some sort of Doppler correction.

Finally there are the RIT (receiver incremental tuning) and XIT (transmitter
incremental tuning) indicators. If RIT is off, receiving occurs on the VFO
dial frequency. If RIT is on, the indicator becomes yellow and also indicates
the RIT offset, that is, the frequency offset used while receiving. RIT is used,

3.8. METER SECTION 25

for example, if during your CW QSO the frequency of the transmitter of your
QSO partner drifts and you want to follow without altering the frequency of
your own transmitted signal. The RIT indicator corresponds to the active
receiver. If XIT is active, the indicator becomes yellow and shows the offset
of the true TX frequency from the VFO dial frequency.

Finally, in the top right corner you see a symbol with a green and a red
line that only occurs if one of the variable filters (Var1 or Var2) have been
selected. The green caret indicates the default filter edges, while the red one
above denotes the current filter edges.

3.8 Meter section

Fig. 3.7 shows the different designs that exist for the meter. To the left
(right) there are the digital (analog) meters, while the top panels show the
meter during RX and the lower panels during TX.

Fig. 3.7: Different designs for the meter.

The design can be switched between digital and analog in the Meter menu,
which can be accessed quickly just by clicking into the meter area. During
RX, an S-meter is shown together with the signal level in dBm. Note that
-73 dBm corresponds to S9 for frequencies up to 30 MHz, while above 30
MHz, S9 corresponds to -93 dBm. Since the S meter is in steps of 6 dB, a
signal level of S1 (below 30 MHz) corresponds to -121 dBm.

During TX, the output power is displayed, provided that the radio actually
reports this power. The output power meter can be calibrated (see the PA

menu). If the SWR exceeds a threshold for SWR warnings (the default is
1:3, but this can be changed in the TX menu), the SWR indicator turns red.
If, in addition, SWR protection is enabled in the TX menu, the output drived

26 CHAPTER 3. MAIN WINDOW LAYOUT

will be reduced to zero if the SWR exceed that threshold. Furthermore, the
ALC (automatic level control) value of the transmitter is shown. Negative
ALC values (at least in peak mode) indicate that the volume of the TX input
audio could be increased to get full output power.

Further info on the meters (e.g. switching between ,,peak” and ,,average”
reporting) is described in the Meter menu.

Chapter 4

The Main Menu: introduction

Fig. 4.1: The Main men, opened by the Menu button.

Now we have a series of chapters that discuss all the piHPDSR menus. Many
menus can be opened by a button click (or a push-botton on an external
controller), e.g. hitting the MODE, FILT, or NOISE button on the toolbar you
have seen in the last picture. You already know that the VFO and Meter
menus can be opened by clicking into the VFO or meter section at the top
of the window. When operating with a mouse, a secondary click in the RX

27

28 CHAPTER 4. THE MAIN MENU: INTRODUCTION

or TX panadapter opens the RX or TX menu. But there is one place from
which all piHPSDR menus are at hand, and this is the ”Main Menu”. It
can be opened by clicking into the Menu button at the top right corne of the
piHPSDR window, the outcome is shown in Fig. 4.1.

Some remarks have to be made about menus in general. Since piHPSDR is
optimized for working with small screens, only one menu can be open at a
time. If a menu is open and one tries to open another one, the first menu
will be destroyed (closed) and the new one will be opened. For example, if
you hit the FILT button in the toolbar when starting from Fig. 4.1, the main
menu closes and the Filter menu opens. If you try to open a menu that
is already open, then the menu will be closed. So, starting from Fig. 4.1
hitting the Menu button again will close the menu. Likewise, when the Filter
menu has been opened, either via the Main Menu or with the FILT button,
then hitting this button again will close the Filter menu.

While the menus are looking quite diverse, some effort has been invested to
keep some things consistent throughout. For example, at the top left corner
of the menu you usually find the ”Close” button which closes the menu.
The close button is somewht emphasised (slightly larger letters, and a thin
border) so you will always quickly find it. Of course, it it possible to close a
menu by deleting the menu window (on RaspberryPi, this is the small cross
at the left of the title bar) but this is neither necessary nor recommended.

There are some commands available here that do not directly affect the radio
operation, so these commands are found in the top and bottom line of the
Main Menu. We first mention the Restart button in the middle of the
top line. This restarts the radio protocol. While not needed under normal
circumstances, it my happen (especially with beta releases of radio FPGA
firmware) that the data exchange between piHPSDR and the radio gets out-
of-sync. I observed such problems with early versions of the P2 firmware
for Orion2 boards and that is the reason the Restart button is there, since
this made a quick recovery possible without loosing the QSO. At the bottom
right, there is the Iconify button which ,,minimizes” the piHPSDR window.
Normally, if needed, one can do so by standard methods of the operating
system in the title bar of the piHPSDR window. If piHPSDR, however,
runs in full-screen mode (this is the case on very small touch screens), then
the Iconify button to make the piHPSDR window temporarily disappear
without breaking the connetion to the radio, do some work with the operating

4.1. THE EXIT MENU 29

system, and get the piHPSDR window back. Note in earlier versions of
piHPSDR this function was associated with the ”Hide” button in the top
right corner of the main window. Then, there are two menus (Exit and
About) which are described in due course and which one can open by clicking
either Exit piHPDSR or About in the main menu.

The other buttons, between the two horizontal separator lines, give access to
piHPSDR control and fine tuning. They are organized in six columns, namely
radio related menus (first column), VFO related menus (second column), RX
and TX related menus (third and fourth column), menus affecting both RX
and TX (fifth column) and, finally, menus for adjusting how you can control
piHPSDR (sixth column), either via Toolbar, MIDI, or GPIO encoders or
switches. ,,Encoders” are knobs which you can turn, and which can be used
to change AF volume or TX output power. ,,Switches” are push-buttons
which can be used to trigger a function such as transmitting a carrier for
tuning, toggle between RX and TX, open a menu, and so forth.

4.1 The Exit Menu

Fig. 4.2: The Exit menu.

30 CHAPTER 4. THE MAIN MENU: INTRODUCTION

Via the Exit menu, you can leave the piHPSDR program. When leaving
the program, the radio protocol is stopped and all the settings are written
to a preferences file. This file is located in the piHPSDR directory and takes
the name xx-xx-xx-xx-xx-xx.props, where the xx encode the MAC address
for the radio. So the preferences for different radios (if you have more than
one) are stored in different files. To leave the program, just click the ”Exit”
button in this menu. If you decide you want to continue, you can leave the
Exit menu by clicking the ”Cancel” button. This is the button which closes
the menu and has the same position and look as the ”Close” buttons in all
the other menus.

If piHPSDR runs with administrator privileges, you can even leave the pro-
gram and either re-boot or switch off the computer via the ”Reboot” and
”Shutdown” buttons. This makes sense for setups where a Raspberry Pi
running piHPSDR, a small SDR radio, a touch-screen and several encoders
and switches are built into a single common enclosure. On the other hand,
when running piHPSDR on desktop or laptop computers, clicking ”Reboot”
or ”Shutdown” both leave the piHPSDR program but no re-boot or shutdown
takes place, due to missing administrator privileges.

4.2. THE ABOUT MENU 31

4.2 The About Menu

Fig. 4.3: The About menu.

The about menu gives you some information about piHPSDR, first the origi-
nal author, John Melton, and an (incomplete) list of persons who contributed
to the code, and then a statement which version of piHPSDR is working here,
and when it has been compiled. Here you also find the version number of the
WDSP library which is the ,,engine” running under the hood, and which does
nearly all of the signal processing. If you file a bug report, this is very im-
portant information so you should always include a screen shot of the About

menu when reporting problems. Of particular importance is the so-called
commit, this hexadecimal number (here: 8339957) identifies the exact status
of the source code files when the program has been compiled. If a string
-dirty is appended to the version number (here: 2.3-DL1YCF, that is, not
dirty) this means that one or more files have been locally modified and do not
match the commit, and problem reports from a ,,dirty” version are difficult
to handle.

Finally, there is some data on the radio, namely the device type and version
numbers, and which protocol is running. For diagnostic purposes, you also
see the MAC address of the radio, its IP address (here: 192.168.2.1) and the

32 CHAPTER 4. THE MAIN MENU: INTRODUCTION

IP address of the computer running piHPSDR (here: 192.168.2.2). The IP
and MAC address of the radio are also given in the piHPSDR main window
title bar, the MAC address is of interest since the radio-specific preferences
are stored in a file whose name derived from the MAC address of the radio,
replacing the colons by dashes and appending ,,.props”.

Chapter 5

The Main Menu: Radio-related
menus

5.1 The Radio Menu

Fig. 5.1: The Radio menu.

The Radio menu lets you make settings which affect the general setting, and

33

34 CHAPTER 5. THE MAIN MENU: RADIO-RELATED MENUS

the hardware of the radio. The following figure (Fig. 5.1) shows the menu
as it opens on an Anan G2 radio. Note this menu looks slightly different for
different radios and protocols, this will be discussed at the end of the section.
First, we go through all the elements we see in Fig. 5.1, they will be colored
red in the following list.

Receivers: In the pop-down menu (GTK combo-box) below this string,
you can select the number of receivers that are running (well, you can choose
between 1 and 2). When the number of receivers change, the radio commu-
nication will shortly be stopped and then resumed, so do not be surprised if
the spectrum scope freezes for a second or so.

RIT/XIT step: In the pop-down menu you can choose among three (1 Hz,
10 Hz, 100 Hz) step sizes for RIT and XIT. For example, if the RIT step is
10 Hz, then you can change the RIT offset in steps of 10 Hz with the RIT+
or RIT- buttons in the toolbar or on the GPIO/MIDI controller.

Region: Although not obvious, this selects settings for the 60m band. Pos-
sible choices are ”Other”, ”UK” and ”WRC15”. The Other and UK choices
implement the channel structure of the 60m band according to the regu-
lations valid in the USA and Great Britain. ”WRC15” gives you a small
(15 kHz wide) 60m band according to the WRC15 (World Radio Conference
2015) document, which is now implemented in many countries.

Orion/Saturn Mic jack: This part of the menu is not shown for pre-Orion
boards. The Orion, Orion2, and Saturn boards can switch the connections
of the TRS microphone jack in software (hardware jumpers had to be used
previously). While the ring of the TRS plug is always connected to ground,
the microphone and PTT connections are on the ring an tip and you can
choose which one is on the ring and which one on the tip. You can then
separately enable the PTT function of the jack, and select whether a bias
(DC offset) is applied to the mic connetion (this is necessary for condensor
microphones and detrimental if a dynamic mirophone is connected without
a blocking capacitor).

Mic Input: This is only shown for Saturn boards. These radios have two
jacks for connecting a microphone, either a 3.5mm TRS jack in the front
panel, or an XLR connection in the back panel. The pop-down menu lets
you choose between these two options.

SAT mode: Here you can choose between SAT off, SAT, and RSAT. In SAT

5.1. THE RADIO MENU 35

mode, frequency moves applied to one of the two VFOs are applied to the
other VFO as well. This is convenient for cross-band operation over satellites
with (normal) linear transponders. In RSAT mode, frequency moves applied
to one of the two VFOs are applied to the other with the sign inversed,
that is, if for example you move the frequency of VFO A up by 3 kHz, the
frequency of VFO B moves down by the same amount. This is convenient
for cross-band operation over satellites with inverted transponders. Inverted
transponders are sometimes find in low and fast moving satellites because
this leads to some Doppler correction.

Filter board: Normally SDRs have some sort of built-in PA with a filter
board. Filters in the TX path between the PA and the antenna are always
required, and filters in the RX path provide some protection against ADC
overloads from strong out-of-band signals. Here you can choose between
NONE, ALEX, APOLLO, CHARLY25, and N2ADR. Choose NONE if none of the other
cases apply, and hope your radio does things right automatically. ALEX is
the most frequent choice and applies to the largest part of current HPSDR
radios. APOLLO is an early design of a PA/filter combination for Hermes
boards, choose this if you have one. CHARLY25 is a filter board used in some
RedPitaya based radios (STEMlab and HAMlab). If you choose this, the
Attenuator slider will disappear from the Slider area (because this design does
not have a step attenuator), instead, you get a combined Attenuator/Preamp
check-box which lets you choose between zero, preamp values of 18 and 36 dB,
and attenuation values of 12, 24, and 36 dB. N2ADR, finally, is the filter board
usually used in combination with a HermesLite-II radio. It is controlled by
the OC (open collector) bits in the HPSDR protocoll. This means if you
use N2ADR, this will override your OC settings upon program startup. It
is possible to change the OC settings in the OC menu, and these settings
are saved with the preferences. Upon next program start, however, these
preferences will again be overwritten as long as the N2ADR filter board is
chosen.

VFO Encoder Divisor: This option is normally only used for GPIO con-
trollers. Often, the encoders of the main VFO dial generate too many ticks
per revolution, such that it is difficult to fine tune on a signal. If the VFO
Encoder Divisor, as shown in the example, has a value of 15, only every 15th

tick will we processed. The Divisor is also effective if you control piHPSDR
with an ANDROMEDA console. So, if the frequency moves too fast if you
turn the VFO knob, you have to increase the Divisor, and if it moves too

36 CHAPTER 5. THE MAIN MENU: RADIO-RELATED MENUS

slowly, decrease it.

Split Use this checkbox to enable/disable Split mode. In Split mode, the
frequency of the non-active receiver (when using two receivers) or the fre-
quency of VFO-B (when using one receiver) controls the TX frequency. In
normal (non-Split) mode, it is the frequency of the active receiver (2 RX) or
the frequency of VFO-A (1 RX) that matters.

Duplex Use this checkbox to enable/disable Duplex mode. In Duplex mode,
the receiver(s) continue working during TX. In normal setup, this is detri-
mental since the very strong signal that originates from the crosstalk at the
T/R relay will lead to AGC pumping, making your receiver(s) essentially
deaf for a short period after TX/RX switching. However, when using dif-
ferent and well-decoupled antennas for RX and TX (this is typical for some
satellite operations), Duplex mode gives you important information, as you
can see your own downlink signal. In contrast to what is often stated, Duplex
mode does not affect the data stream between the computer and the radio,
it only determines whether the receivers (within the WDSP library) are shut
down during transmit or not.

Mute RX when TX This option mutes the RX audio while transmitting. It is
important to note that the RX continue to work, so you can see the signals
on the RX panel, the S-meter works, etc. This option is largely equivalent
to moving the AF slider to the minimum position while transmitting.

PA enable This enables/disables the PA in the radio. In addition to this
global flag, there is a per-band PA enable option for the transverter bands
(see the XVTR menu).

Note that the last four options (Split, Duplex, Mute RX when TX, and PA

enable are not shown for RX-only radios.

Optimize for TouchScreen The normal procedure to make a selection from
a pop-down menu (such as the Receivers: button on this screen) is to click
(and hold) it with a mouse, then drag the mouse to your choice, and then
the selection is made by releasing the mouse button. This is very difficult to
achieve on a touch screen. Therefore, if Optimize for TouchScreen check-
box is checked, the pop-down menus are modified as follows: You click and
release on the menu button, then it pops down and stays open. Then you
make your selection by a second click/release sequence on your choice. While
this is (only a little bit) more involved than the normal procedure when using

5.1. THE RADIO MENU 37

a mouse, it is a great helper when using a touch screen. Therefore this op-
tion is set by default, but you can uncheck it here if you prefer normal mouse
operation. Note that this option becomes effective when the next menu is
opened.

Mute Spkr Amp This box only appears on Anan-7000/8000 and G2 radios
using protocol 2. If checked, the audio amplifier driving the speakers (either
the speaker jacks in the back panel, or the built-in speakers) is disabled. This
does not affect the audio signal at the headphone jack.

Enable TxInhibit Input This box only appears for HPSDR (and not for
SoapySDR) radios. For protocol 1, TxInhibit is signalled for most radios
by the Hermes IO1 bit being cleared (the Hermes IO2 bit is used for Anan-
7000/8000). For protocol 2, for most radios the IO4 bit is used (Anan-
7000/8000/G2 use the IO5 bit). If the Enable TxInhibit Input box is
checked, ,,TX Inhibit” will be drawn in the top left corner of the RX1
panadapter if signalled. If TxInhibit is signalled while piHPSDR is trans-
mitting, it will induce a TX/RX transition, and any RX/TX transition is
suppressed while TxInhibit is active. Some radios (e.g. Anan-7000) have a
RCA jack with an active-low input, and the TxInhibit bit follows that in-
put. Note that for effective hardware protection, processing the TxInhibit
bit must take place in the FPGA of the radio. This checkbox simply enables
piHPSDR to tell the user about such an event.

Enable AutoTune input his box only appears for HPSDR (and not for
SoapySDR) radios. The AutoTune state is signalled for protocol 1 by the
input bit IO3, and for protocol 2 by the user input bit IO6 (the active state is
represented by the bit being cleared). If Enable AutoTune input checked,
piHPSDR will initiate TUNE-ing if the input bit becomes active, and stop
TUNE-ing if it later on becomes inactive. For the Anan-7000, there is no
RCA jack connected with the IO3/IO6 bit, but the input is available on the
spread-out board (between the Orion-II and the PA board) and one can eas-
ily solder a wire there to have this user input. The AutoTune input is meant
to be pulled down if e.g. a ”Tune” button on an external automatic tuner is
pressed. For such a setup, it is usually recommended to use a reduced RF
output level while TUNE-ing (see the TX menu, chapter 8.1).

Frequency Calibration Here you can set a frequency offset (in Hz). This
offset will be added to all frequencies sent to the radio. This means that if
you discover that a reference signal occurs in your RX panel at 10001 kHz

38 CHAPTER 5. THE MAIN MENU: RADIO-RELATED MENUS

where it should occur at 10000 kHz, you have to set the calibration value to
-1000. Note it is an absolute value, which will we applied to all frequences.

RX Gain Calibration Here you can calibrate your RF front end. To this
end, you need a highly accurate signal source of, say, -73 dBm. Connect this
source to your radio and tune on the signal. If the signal appears at, say, -70
dBm, decrease the calibration value. At -3 dBm, your S-meter should then
state the correct signal strength. The value is the amplification/attenuation
of a virtual device you would need in your RF front end. Therefore, you need
a negative value (attenuation) if the signal shown is too strong. For normal
HPSDR radios, the default value is zero. For the HermesLite-II and other
radios using the AD9866 chip, the default value is 14.

There are some further check boxes in the Radio menu that you cannot see
in Fig. 5.1, since they only appear for specific radio hardware. They appear
to the right of the touch screen optimization check box and will be listed
here.

HL2 audio codec This box only appears if the radio is a HermesLite-II
(HL2). Some of these radios are equipped with an audio codec and a modi-
fied firmware. The audio codec must be enabled by setting a specific bit in
the HL2 protocol, and this check box enables/disables this bit. Furthermore,
if this check box is enabled, RX audio data is sent to the HL2.

Anan-10E/100B This box only appears for Hermes boards. While the Anan-
10E and the Anan-100B identify themselves as Hermes boards, they have a
FPGA with limited resources and this affects the allocation of PureSignal
feedback channels. To make PureSignal work on these machines, you have
to check this box in the Radio menu.

Swap IQ This box only appears for radios connected via the SoapySDR li-
brary. If checked the I and Q samples are exchanged, both in the receivers
and in the transmitter. An indication that this is necessary is if you see
signals with a frequency above your dial frequency in the left half of the RX
panel, or if you have to go to LSB to receive USB signals. If you observe this
behaviour, check this box.

Hardware AGC This box only appears for radios connected via the SoapySDR
library. If checked, automatic gain control (AGC) that is implemented in
hardware in the radio is enabled.

ATLAS bus options. For legacy ATLAS bus radios, a number of additional

5.1. THE RADIO MENU 39

settings have to be made. Therefore, the area where we have seen the Orion
microphone options now contains ATLAS bus settings, as shown in Fig. 5.2.
You will see this only if the radio identifies itself as a METIS board.

Fig. 5.2: The Radio menu for a legacy HPSDR board.

The first difference you notice is that at the left edge of the menu, in the
middle, there is a new Sample Rate: pop-down menu. This has nothing to
do with the ATLAS bus, this occurs if the radio is connected via P1, as it is
often the case for legacy radios. In P1, all receivers share the sample rate,
therefore it is set in the Radio menu. The same applies for SoapySDR radios.
In P2 on the other hand, each of the two receivers can have its own sample
rate, therefore the sample rate is specified in the RX menu. The ATLAS
bus settings are at the right edge of the menu (see Fig. 5.2. The ATLAS
bus has separate receiver and transmitter plug-in boards. To build a radio,
they must be synchronized somehow, and therefore their clocks cannot run
independently, but there must be a master clock.

10 Mhz source: This selects the 10 Mhz master clock, which can be either
ATLAS (the bus itself is the source), Penelope (the transmitter board is the
source), or Mercury (the receiver board is the source).

122.88 MHz source: This selects the 122.88 Mhz master clock, which can
be either Penelope or Mercury.

40 CHAPTER 5. THE MAIN MENU: RADIO-RELATED MENUS

Mic source: This selects where the microphone samples that are sent to
the computer originate, that is, where your microphone has to be connected.
The default is Penelope, this means the microphone is connected to the
transmitter board. The other choice is Janus. The Janus board is simply
an ADC/DAC board (not a radio) and used in some very early setups.

TX config: This indicates which transmitter board is present on the bus.
It can be No TX, if this is a receive-only radio, Penelope or Pennylane. The
Pennylane is a later version of the Penelope transmitter board, the essential
difference is that it can control the output signal level. In the Penelope case,
piHPSDR will scale the IQ samples to provide TX drive control.

Janus Only This box is for ATLAS systems that only have an OZY and a
Janus board, and will only appear for OZY (USB-connected) boards. While
this hardware is not a radio, external hardware such as the SDR-1000 can
be connected to the Janus interface. If this option is checked, piHPSDR
assumes that the radio is controlled outside piHPSDR, and will thus only
process the data stream but not try to send any commands to the radio.

Note that I have no access to such legacy radios, so the piHPSDR code to
handle these radios is partly built on speculation (that is, studying the specs)
and exchanging e-mails with people who still run such hardware. If you meet
any inconsistencies, please contact the author.

5.2 The Screen Menu

The Screen menu lets you dynamically change the size of the piHPSDR
main window, and choose between different VFO bar layouts. Furthermore,
one can select whether the Zoom/Pan, the Sliders, or the Toolbar area are
shown or hidden. The possibility to adjust the screen size has been the most
frequent feature request in the last years, so I finally decided to implement
it. The menu is opened via the main menu and the Screen button and is
shown in Fig. 5.3.

The window width and height can be chosen with the spin buttons shown.
The minimum values for width and height are 640 and 400, the maximum
values are determined by the resolution of the monitor. If more than one mon-
itor is attached, the dimension of the monitor on which the initial piHPSDR
window was opened determines the maximum width and height. Changes

5.2. THE SCREEN MENU 41

Fig. 5.3: The Screen menu.

made in the spin buttons become effective immediately. If piHPSDR is in
full screen mode (see below), you can change the values of the window width
and height, but they do not become effective until you leave the full screen
mode.

Fig. 5.4: Four choices for the VFO bar built into piHPSDR.

If the window width is decreased such that the VFO bar chosen does no
longer fit, the first one in the list that does fit is automatically selected, and
the current choice shown in the pop-down menu Select VFO bar layout is
updated. This menu lets you choose the layout of the VFO bar. In Fig. 5.4

42 CHAPTER 5. THE MAIN MENU: RADIO-RELATED MENUS

the pre-defined layouts are shown.

These layouts require a screen size of 1010, 895, 795, and 635 pixels (from top
to bottom). The VFO bar has been described in detail in chapter 3.7. If you
choose a VFO bar layout that is wider than the current window width allows,
the window width is automatically adjusted (increased). On the other hand,
choosing a VFO bar layout that is smaller than before does not affect the
screen dimensions.

Fig. 5.5: piHPSDR running in a 640 x 400 window.

Fig. 5.5 shows, as an example, piHPSDR running in a window as small
as 640*400 pixels. It is admitted that this looks rather squeezed, and this
will only be useful if a single receiver is run with no waterfall. However,
for portable operations such small windows are often desired, if piHPSDR
is to be run alongside with a logbook and/or digimode program on a small
laptop. Note that the piHPSDR menus are designed to fit on a window
800*480 pixels large, so it is not recommended to run piHPSDR on a screen
that small. On the other hand, if piHPSDR is run on a laptop in a small
640*400 window, then menus may be larger than that but still fit well on the
screen (thus hiding, momentarily, the window of, say, your logbook program)
and are perfectly usable.

Stack receivers horizontally. If checked, this puts the panels of the
two receivers (if two receivers are used) side-by-side instead of on top of each
other.

5.2. THE SCREEN MENU 43

Full Screen Mode. If you check this option, piHPSDR goes to full screen
mode. In this mode, the window width and height is ignore, instead, piH-
PSDR occupies the whole area of the screen. In a multi-monitor setup, the
area of the monitor on which the piHPSDR window was opened upon pro-
gram start is filled. If you leave full screen mode, the size of the piHPSDR
window is again determined by the width and height chosen above.

Display Zoom/Pan This option can be used to show/hide the Zoom and Pan
slider below the RX or TX panel. If you do not use Zoom, or control Zoom
via an external GPIO or MIDI controller, this can be used to save some
vertical space.

Display Sliders This option can be used to show/hide the slider area (that
is where the AF gain and the Drive slider resides). Hiding them makes little
sense unless you have a GPIO or MIDI controller. For temporarily gaining
vertical space, use the Hide button at the top right of the main window.

Display Toolbar This option can be used to show/hide the toolbar. This
only makes sense of using an external GPIO or MIDI controller. Note that
when using the piHPSDR Controller1, the toolbar should remain on display
since this then serves as an indication which function is associtated with each
of the 8 push buttone immediately below the screen.

Display Warnings There are several non-fatal conditions that can be dis-
played either on the panadapter of the first receiver or, in non-duplex mode,
on the TX panadapter. Normally these warnings are no reason to worry if
you see them only occasionally. These conditions are

Sequence Error. Packets from the radio arrive in the wrong order, or
packets are missing. If this occurs frequently, check the connection between
the radio and the host computer.

ADC overload. The RF input level is too high for one of the analog-to-
digital converters. If you see this, increase attenuation in the RF front end.

TX FIFO underrun/overrun The TX IQ data packets sent to the radio
while transmitting either arrive too fast or too slow, such that the first-
in/first-out queue of TX samples inside the FPGA of the radio either over-
flows or drains.

High SWR During TX, an SWR above the SWR threshold has been de-
tected. If this occurs frequentyl, check your antenna. The SWR threshold

44 CHAPTER 5. THE MAIN MENU: RADIO-RELATED MENUS

(default: 3.0) can be set in the TX menu.

Display PA current If this is checked, the PA supply voltage and the
PA current are shown while transmitting. This data is only available for
Orion-II and SATURN boards (ANAN-7000/8000 and ANAN-G2 and the
HermesLite-II). For the HermesLite-II, the PA temperature and the PA cur-
rent are shown.

5.3 The Display Menu

The Display menu is used to customize the overall layout of the piHPSDR
window and the panadapters of the active receiver. Adjustments for the TX
panadapter must be done in the TX menu. The menu is shown in Fig. 5.6.

Fig. 5.6: The Display menu.

Frames Per Second: This adjust how often the RX display is re-drawn. 10
frames per second (the default) is a good value.

Panadapter High: This value is the dBm value of the RX signal strength
at the top of the RX spectrum scope. A value of -40 dBm corresponds to S9
+ 33 dB for HF signals.

5.3. THE DISPLAY MENU 45

Panadapter Low: This value is the dBm value of the RX signal strength at
the bottom of the RX spectrum scope. A value of -140 dBm is usually low
enough such that the noise floor is still on display.

Panadapter Step: This value is the spacing of the horizontal lines on the
spectrum scope. Lines are drawn at dBm values that are multiples of the
step size.

Waterfall High: This is the RX dBm value that will lead to the brightest
color (yellow) in the waterfall. If the Waterfall Automatic: box is checked
(see below), this spin button is grayed out and inactive.

Waterfall Low: This is the RX dBm value below which the waterfall will
be black. If the Waterfall Automatic: box is checked (see below), this spin
button is grayed out and inactive.

Waterfall Automatic: If this box is checked (as is the case in Fig. 5.6), the
Waterfall High and Waterfall Low controls are inactive and the values
are not used. Instead, the lowest and highest signal strength in the RX
spectrum are automaticall determined in each update of the waterfall, and
these min/max values are then used instead of the waterfall High/Low control
values to determine which colour belongs to which signal strength.

Detector: Here one can choose between Peak, Rosenfell, Average and Sam-
ple. The Rosenfell detector is probably closest to what one knows from a
spectrum analyzer. The Average detector is usually preferred since it is less
,,nervous”.

Averaging: Here the possible choices are None, Recursive, Time Window
and Log Recursive. For the details, see the WDSP manual.

Av. Time (ms): If averaging is used for the spectrum scope, the time
constant involved in averaging can be set here.

Fill Panadapter This is used to enable/disable the ,,Filling” option for the
RX spectrum scope (see chapter 3.2).

Gradient This is used to enable/disable the ,,Gradient” option (color coding)
for the RX spectrum scope (see chapter 3.2).

Display Waterfall This option enables/disables the waterfall display of the
RX panels. Note the spectrum scope is always shown (you cannot have the
waterfall alone).

46 CHAPTER 5. THE MAIN MENU: RADIO-RELATED MENUS

5.4 The Meter menu

Fig. 5.7: The Meter menu.

The Meter can either be opened simply by clicking in the meter area, or
through the main menu. Only few choices can be made here.

Meter Type: Here you can select between a digital and an analog meter.
The four different designs (either analog or digital, and during RX or TX)
have already been shown in Sec. 3.8.

In both cases, there is a choice between Peak and Average reading, which
refers to peak envelope power and average power. Here averaging is done over
relatively short times. For a two-tone signal for example, the peak reading
is 3 dB above the average reading.

S-Meter Reading: Here you can choose whether the S-meter reports a Peak
or an Average value (default is Average). Note, however, that in order to
make the display less ,,nervous” a moving average with a rather long time
constant (about 0.5 sec) has been implemented on top of both the Peak and
Average S-meter readings.

TX ALC reading: Here, the possible values are Peak, Average, and ALC
gain. For a two-tone signal with maximum audio amplitude the Average

5.5. THE XVTR (TRANSVERTER) MENU 47

ALC value is -3.0 dB, while the Peak value is 0.0 dB. Therefore I personally
prefer the Peak value here and made it the default in piHPSDR: if the value
is less than zero, one can and should increase either the amplitude of the
incoming audio signal (e.g. boost the microphone preamp) or move the Mic
gain slider to the right. The reason is, that PureSignal only works if the TX
audio input has maximum amplitude, so you can put the drive slider to zero,
then put the radio into TX mode, whistle into the microphone and slowly
increase the Mic gain until the ALC value shown is only slightly less than
zero.

For RX-only radios, the TX ALC setting will not be shown in the menu.

5.5 The XVTR (Transverter) Menu

The XVTR menu lets you define additional bands that you can work on using
transverters. The bands should normally be beyond the standard frequency
range of the radio, otherwise the calculation of a band from a given frequency
will sometimes not work. To give an example, suppose you have a transverter
which you can drive with frequencies between 28 and 30 MHz and which will
convert them to the frequency range 144 to 146 MHz, and which will receive
frequencies in that range and mix them down to the 10m band. The data
you have to enter in the XVTR menu (use the first free entry) are as follows:

Title In this column, enter a name for your band. You can choose whatever
name you want, this is the one that will be displayed in the Band menu. In
the present example, use ”144” or ”144 MHz” or ”2m”.

Min Freq Enter the lowest frequency of the transverter band in MHz, in the
present case, 144.

Max Freq Enter the highest frequency of the transverter band in MHz, in
the present case, 146.

LO Freq This is the frequency offset (in MHz) between the radio frequency
and the operating frequency. In this case, use 116. From this offset, radio
frequencies between 28 and 30 MHz will be used for operating frequencies
between 144 and 146 MHz.

LO Err This entry can be used for a fine calibration of the frequency. The
value (in Hz) is added to the local oscillator (LO) freq in MHz.

48 CHAPTER 5. THE MAIN MENU: RADIO-RELATED MENUS

Fig. 5.8: The XVTR (transverter) menu.

Disable PA This checkbox indicates that the PA of the radio should be
disabled when using the transverter band. This implies that the radio has
some sort of low-power output that is used to drive the transverter.

Fig. 5.9: XVTR setup for QO-100 operation.

To give an example of how to setup transverter operation, a sample setup

5.5. THE XVTR (TRANSVERTER) MENU 49

for QO-100 operation with an Adalm Pluto is given. The Pluto is operated
via the SoapySDR interface. For receiving in the 10 GHz band, one uses a
so-called LNB (low noise block) in the focus of the parabol antenna which
converts the 10 GHz signal down to about 740 MHz. The setup for defining
the ”QO100” transverter band is shown in Fig. 5.9.

The LO (local oscillator) frequency is always chosen such that it is below
the RX frequency, and the difference between the RX frequency and the
LO frequency is the frequency the radio is operating on. The name (here:
QO100) can be chosen as one likes, but it cannot be left empty. Once the
transverter band has been defined, it shows up in the BAND menu (see Chapter
6.2), as shown in Fig. 5.10.

Fig. 5.10: The Band menu after defining the QO100 band.

To make QO-100 Operation easy, the working frequencies, the CTUN mode
etc. should be stored in the first bandstack entry of the QO100 and the 13
cm band. To this end, click on the QO100 in the band menu (Fig. 5.10 and
adjust the VFO-A frequency until the display reads 10489.500 MHz. Now
swap VFO-A and VFO-B (A<>B command) and enter 2400 MHz into VFO-A
using the VFO menu (Chapter 6.1). and swap the VFOs again. SAT mode will
now ensure the 10.489 GHz Receive Frequencies and the 2.4GHz Transmit
frequencies track correctly when changes are made to the Receive frequency.
PiHPSDR will now remember these settings when you select the bands. The
complicated swapping was necessary since band stack entries will only be
stored from VFO-A.

Fig. 5.11 gives an impression of how this actually works. Note that the
default setup is working Split, Duplex and SAT. Split mode implies that
VFO-B is used for transmitting. Duplex mode implies that the receiver
continues to work while transmitting so you can watch and hear your own
signal. The TX spectrum scope then appears during transmitting in a small
separate window.

50 CHAPTER 5. THE MAIN MENU: RADIO-RELATED MENUS

Fig. 5.11: Working QO100 with piHPSDR and the Pluto.

Chapter 6

The Main Menu: VFO-related
menus

In this chapter we discuss the menus from the second column of the main
menu. These are all VFO-related menus.

6.1 The VFO menu

The VFO menu can be used for direct frequency entry and to enable/disable
some frequently used options. If the menu is opened, it refers either to VFO-
A or VFO-B. If opened via the main menu, it automatically refers to the VFO
controlling the active receiver. The easiest (and therefore recommended) way
to open the VFO menu is just to make a mouse click (or a touch screen press)
into the VFO bar. If clicked in the left half of the VFO bar, the menu is
opened for VFO-A and if clicked in the right half, it is opened for VFO-B.
The VFO menu is shown in Fig. 6.1.

The ,,keypad” is used for direct frequency entry. You can enter digits and a
decimal point. While entering a number the string entered so far is not only
shown in the upper part of the VFO menu, but also (in yellow digits) in the
VFO bar. The other buttons of the ,,keypad” have a special meaning:

BS Backspace. This cancels the last entered character (digit or decimal point).

Hz This enters the frequency ,,as is”.

51

52 CHAPTER 6. THE MAIN MENU: VFO-RELATED MENUS

Fig. 6.1: The VFO menu.

kHz This multiplies the frequency just entered with 1000 and enters it. This
means, the number entered is interpreted as a frequency in kHz.

MHz The string typed in so far is interpreted as a frequency in MHz and this
frequency is transferred to the VFO.

Clear The string typed in so far is deleted, the VFO frequency is not updated.

The commands entered by clicking the buttons of the keypad in the VFO
menu can also be entered by push-buttons from a GPIO or MIDI controller,
see the NumPad commands in Appendix A.

In addition to frequency entry, the VFO menu offers a convenient way of
changing some piHPDSR settings, simply because the VFO menu can be
opened by a simple mouse click into the VFO bar.

Rit Step: In this pop-down menu, the RIT/XIT step size can be chosen
(1/10/100 Hz).

VFO Step: In this pop-down menu, the VFO step size can be chosen. The
VFO step sizes range from 1 Hz to 1 MHz.

Lock VFOs With this check box enabled, VFO frequencies cannot be changed

6.2. THE BAND MENU 53

by turning a VFO dial (GPIO or MIDI controller), or by clicking/dragging
in the RX panel. Band changes (via the Band menu) and other VFO related
functions still work.

Duplex and Split. With these check boxes, you can put the radio in Duplex
or Split mode, see the Radio menu.

CTUN. With this check-box, you can put the VFO this menu is referring to
into CTUN mode. In CTUN mode, the spectrum scope does not move when
changing the frequency, rather, the RX ,,window” moves. CTUN mode does
not affect TX operation.

6.2 The Band menu

The Band menu lets you change the band of the active receiver. It is shown
in Fig. 6.2. When the menu opens, the button of the current band is high-
lighted.

Fig. 6.2: The Band menu.

Pressing a button corresponding to another band, two things happen: first, if
the active receiver is controlled by VFO-A, the current frequency is stored in

54 CHAPTER 6. THE MAIN MENU: VFO-RELATED MENUS

the current bandstack (which is thus updated). Then, the new band is chosen,
the frequency and mode are from the active bandstack entry of the new band.
This means that if you switch to another band and shortly thereafter switch
back to the original band, the frequency and mode is restored to what you
had before.

If you hit the highlighted button, you will not change the band (since you
hit the button of the current band) but instead will cycle through the band
stack of that band (see the BndStack menu).

Note that the band menu may look different from the one shown here: there
are many bands (24 bands plus up to 8 transverter bands) defined in piH-
PSDR. However, the bands that are outside of the radio’s frequency limits
are not shown. For example, a radio whose maximum frequency is 30 Mhz
will not show the 6m band. The GEN (General) band encompasses the whole
frequency range of the radio. If you set the frequency (e.g. via the VFO

menu) to a frequency outside of any of the other bands, you will end up in
the General band. If you have defined transverter bands (see the XVTR menu)
they will be shown, with the title you have chosen, in the Band menu.

6.3 The BndStack (Bandstack) menu

For each band, the band stack is collection of operating frequencies/parameters.
The idea is that you can have preferred or recently visited frequencies to
which you can easily come back. The parameters that are actually stored
are the frequency, the mode (e.g. USB or FMN), the filter, and whether
CTUN is enabled or disabled. The bandstack parameters also encompass
some FMN-specific parameters, namely the deviation and the CTCSS set-
ting. If you open the BndStack menu (Fig. 6.3), the buttons tell you about
the frequency and the mode, and the band stack entry currently selected is
highlighted.

If you press the highlighted button, the parameters which are currently ef-
fective are stored in that band stack entry. If you press another (non high-
lighted) bandstack button, then first the current parameters are stored in the
highlighted band stack entry, and then the parameters of the new entry be-
come effective. Note that parameters in bandstack entries are only changed
if the active receiver is controlled by VFO-A.

6.4. THE MODE MENU 55

Fig. 6.3: The BndStack (Bandstack) menu.

6.4 The Mode menu

The Mode menu lets you change the mode of the active receiver, so you can
switch, say, from LSB to CWU or DIGU. The mode menu simply lists the
available modes, the current one is highlighted (Fig. 6.4).

Settings stored with the mode. Many settings such as filter choices,
noise reduction and equalizer settings, and TX compressor settings are only
reasonable with a specific mode in mind. Therefore, these settings are stored
with the mode. If you later switch back to this mode, the settings that were
effective the last time you used that mode are restored. This is the main
reason why the USB and DIGU modes are separate (although technically they
are the same), the same applies for LSB and DIGL. For digital operation, you
will normally choose DIGU and have no noise reduction, no TX compressore,
and no equalizer. For voice operation (USB/LSB) you may then have the
noise reduction, equalizer and TX compressor settings as you like it. Then
you can easily switch between DIGU and USB/LSB and have the correct
settings automatically. The same applies to CWL/CWU where you will
normally use different settings compared to both USB/LSB and DIGU.

56 CHAPTER 6. THE MAIN MENU: VFO-RELATED MENUS

Fig. 6.4: The Mode menu.

6.5 The Memory menu

The Memory menu gives you access to ten memory slots. The menu is shown
in Fig. 6.5. You can store the current operating frequency of the active
receiver in any of the five slots by clicking a button in the left column (e.g.
”Store M2”), or you can restore data from any slot by clicking on one of
the entries in the right column which shows the frequency, mode and filter
width stored in that slot. In addition (not shown in the right column) the
FM deviation and the CTCSS setting are stored in the memory slots. So
if you have some often used frequencies (e.g. for a net), the Memory menu
allows you to become QRV there with only few mouse clicks.

6.5. THE MEMORY MENU 57

Fig. 6.5: The Memory menu.

58 CHAPTER 6. THE MAIN MENU: VFO-RELATED MENUS

Chapter 7

The Main Menu: RX-related
menus

The second column of tghe main menu contains menus which allow you to
change receiver settings.

7.1 The RX Menu

Invoking the RX menu through the main menu always implies that the settings
of the active receiver are to be modified. Using a mouse, you can also open the
menu by a secondary click (using the right mouse button) into the receiver
panel. This way, if piHPSDR is running two receivers, you can open the
RX menu for both receivers (the active receiver as well as the other one),
depending on in which panel you have right-clicked. Note secondary clicks
are usually not possible with a touch screen. The menu is shown in Fig. 7.1.

Sample Rate This box is only shown for radios running P2, since only there
the receivers can have an individual sample rate. For radios running P1 or
radios accessed through the SoapySDR library, the sample rate is a global
quantity that is modified throught the Radio menu (see above).

Select ADC This box is only shown if the radio has more than one analog-to-
digital converter (ADC), such as Orion, Orion-II and Saturn boards. These
radios have two ADCs so you can choose whether the receiver gets data from

59

60 CHAPTER 7. THE MAIN MENU: RX-RELATED MENUS

ADC0 or ADC1. For these radios, nearly all antenna jacks go to ADC0, while
there is a jack denoted ”RX2” (or similar) that is connected with ADC1. In
most cases, ADC0 is used for normal operation, while ADC1 can be used for
connecting a dedicated RX antenna.

Note: Diversity. When using Diversity reception, the ADC setting is
overridden, since there data streams from ADC0 and ADC1 are combined
(mixed).

Fig. 7.1: The RX menu.

Dither. When checked, the ,,dither” bit is set which affects the operation of
the ADC converter in some HPSDR boards.

Random. When checked, the ,,random” bit is set which affects the operation
of the ADC converter in some HPSDR boards.

Preamp. This checkbox is not shown in Fig. 7.1, it only occurs for some
legacy HPSDR boards which had a switch-able RX preamp.

Mute when not active. If checked, the audio from this receiver is muted
when it is not the active receiver.

Mute Audio to Radio. If checked, the audio in the HPSDR data stream
from this receiver is muted. This has only an effect for P1 and P2 (not for

7.1. THE RX MENU 61

SoapySDR), and only affects headphones/speakers connected to the radio.
Local audio is not affected. The main use of this checkbox is to mute a
radio-connected headphone while doing digimode via local RX output.

Bypass ADC0 RX filters. This box is only shown if the ALEX filter board
is selected (see the Radio menu). If checked, the filters in the RF frontend
for ADC0 are by-passed during receive. This option will normally only used
for radios that have band-pass filters in the front end, if one operates two
receivers both running on ADC0 data on different bands. Without checking
this option, only the signals for the band of the active receiver will pass.
Older radios (up to ANAN-100/200) have a combination of a low-pass and a
high-pass filter in the RX path to ADC0. If these radios run two receivers,
the low-pass filter is selected based on the higher of the two RX frequencies,
and the high-pass filters is selected based on the lower one. This ensures that
the signals for both receivers fall into the filter pass band.

Bypass ADC1 RX filters. This box is only shown if the RF frontend for
ADC1 features a filter board (ANAN-7000/8000 and G2 radios), and if the
ALEX filter board is selected (see the Radio menu). If checked, the filters in
the RF frontend for ADC1 are by-passed during receive.

Local Audio Output: If checked, the audio from this radio is sent to a local
sound card (or virtual audio cable). The sound card itself is selected in the
pop-down menu below this check box. One line further below, one can select
between Stereo, Left and Right, and select whether the RX audio should
be sent to both channels or to the left or right channel only.

In the example shown, checking the Local Audio box would send the RX
audio samples to the HDMI monitor attached to the RaspPi, but one could
equally well choose the headphone output or a virtual cable, if one wants to
use digital modes.

If running two receivers, it depends on the audio output module whether it is
possible to use the same audio output device as local audio output for both
receivers. With PulseAudio, this is possible which gives you an additional
bonus: Choose the same output device for RX1 and RX2 and activate only
the left channel for the first and only the right channel for the second receiver.
With this setup, one gets the audio output of the first receiver on the left
ear and the audio output of the second receiver on the right ear. This can
be very convenient for hunting DX in split mode, because one then hears the

62 CHAPTER 7. THE MAIN MENU: RX-RELATED MENUS

hounds and the fox on different ears.

7.2 The Filter menu

Fig. 7.2: The Filter menu (single side band modes).

With the Filter menu, you can change the filter of the active receiver. There
are ten fixed filters and two variable filters, see Fig. 7.2. It depends on the
current mode which filters are at your disposal, and Fig. 7.2 is what you
see for USB and LSB modes. The filter currently active is highlighted, and
you can choose another filter simply clicking the button. For USB and LSB,
the filters are such the low-frequency cut (in the audio domain) is at 150 Hz,
so a 2.7k filter actually encompasses audio frequencies from 150 to 2850 Hz.
With the variable filters (Var1 and Var2) you can be more flexible in the low
audio frequency range. Here you can individually select the low- and high
frequency cut (both frequencies refer to the audio domain, and are thus both
positive value for USB and LSB).

The pre-defined filters for the digital modes DIGU and DIGL are a little bit
different. For filter widths up to 3 kHz, the filter is centered around 1500 Hz.

7.2. THE FILTER MENU 63

For example, a 1.0k filter for DIGU/DIGL passes audio frequencies between
1000 and 2000 Hz.

Fig. 7.3: The Filter menu for CWL/CWU.

For modes such as CW and AM, low/high cutoff frequencies have little mean-
ing, so the Filter menu looks slightly different (Fig. 7.3). The fixed filters
are designated by their width, they are centered around zero (for AM) or
around the CW side tone frequency (for CWU and CWL). For the variable
filters Var1 and Var2, the spin buttons can set the filter width and the filter
shift. Normally you will not want to change the filter shift, but it may help
in special cases.

Enable additional CW Audio peak filter. If the mode of the active re-
ceiver is CWL or CWU, there will be an addition check box in the top row of
the menu. Here you can enable/disable an audio peak filter that is applied
to the final audio output of the receiver, that is, on top of the regular filter-
ing. The audio peak filter will only be effective in the CW modes, its center
frequency is given by the CW side tone frequency and its width is automat-
ically calculated, depending on the width of the primary filter. The audio
peak filter can be used to dig out the CW signal from the noise (making the
regular filter narrower also does this job). The audio peak filter can also help
to tune to the correct frequency: the regular filters have a flat pass band so

64 CHAPTER 7. THE MAIN MENU: RX-RELATED MENUS

the received signal equally loud as long as it is in the pass band. The audio
peak filter has a marked peak at the side tone frequency so you can tune for
maximum signal volume to adjust your frequency to the received signal.

There is the function CW Audio Peak Filter that can be mapped on toolbar
buttons or GPIO/MIDI buttons so you can quickly enable/disable the audio
peak filter.

Filter menu and FM mode. In FM mode, the Filter menu only lets you
choose between a deviation of 2500 Hz or a deviation of 5000 Hz. Irrespective
of whether the box Use RX Filter in the TX menu (see Chapter 8.1) is
checked, the deviation setting is used both for RX and TX. Filter edges (both
for TX and RX) are then calculated according to Carson’s rule. Assuming a
maximum audio frequency of 3000 Hz, a filter width of 11 kHz and 16 kHz
result for deviations of 2500 and 5000 Hz.

7.3 The Noise Menu

Fig. 7.4: The Noise menu (with NR settings).

With the Noise menu you can select a variety of noise reduction and/or
noise blanker capabilities (Fig. 7.4). The upper part of the menu always

7.3. THE NOISE MENU 65

looks the same, the lower part lets you fine-tune noise reduction or noise
blanker parameters. For an in-depth explanation of the noise reduction and
noise blanker capabilites, the reader is referred to the WDSP manual.

SNB This check box lets you enable/disable the spectral noise blanker.

ANF This check box enables/disables the automatic notch filter. The ANF is
very good at eliminating a single-tone QRM carrier in SSB modes. It goes
without saying that activating the ANF in CW is detrimental rather than
beneficial, because here the signal is of the type the ANF tries to eliminate.

Noise Reduction With this pop-down menu, you can choose the type of
noise reduction (no noise reduction, NR1 or NR2).

Noise Blanker With this pop-down menu, you can choose the type of noise
blanker (no noise blanker, the preemptive wideband blanker NB or the in-
terpolating widetband blanker NB2).

NR Settings/NB Settings Choosing one of the two buttons determines
whether the lower part of the menu offers fine-tuning of the noise reduc-
tion or noise blanker settings. The set up for changing the noise reduction
settings is shown in Fig. 7.4, below (Fig 7.5) you find the set up for changing
the noise blanker settings. We discuss the noise reduction settings first, but
note again for the details you have to study the WDSP manual.

NR2 Gain Method The available choices for the NR2 noise reduction here are
Linear, Log, and Gamma, where Gamma is the default.

NR2 NPE Method The available choices for the NR2 noise reduction here are
OSMS and MMSE, where OSMS is the default.

NR...Position In the RX chain, the noise reduction can be placed before or
after the automatic gain control (AGC). The choice here refers to all noise
reduction capabilities (SNB, ANF, NR1, NR2).

NR2 Artifact Elimination The NR2 noise reduction algorithm is prone
to producing artifacts, so there is an option to reduce such artifacts which
should normally be checked (artifact elminiation ,,on”).

Note the noise blanker works very different from the noise reduction, since
noise blanking is applied to the original RX IQ samples before any frequency
shifts etc. take place. If you have a single source of noise (e.g. a Plasma
TV) that drives you crazy, it is worth the effort to play around with the

66 CHAPTER 7. THE MAIN MENU: RX-RELATED MENUS

Fig. 7.5: The Noise menu (with NB settings).

NB2 parameters, especially the timings. Different QRM sources will require
different parameters! The default parameters have been proven useful for
many situations, but for you a different setting may produce better results!
The options to control the noise blanker algorithms are:

NB2 Mode The available choices for the interpolating NB2 noise blanker here
are Zero, Sample&Hold, Mean Hold, Hold Sample, and Interpolate.

NB Slew time/Lag time/Lead time/Threshold These parameters apply both
to NB and NB2. piHPSDR currently does not allow to have a separate set
of parameters for NB and NB2.

7.4 The AGC Menu

Only few parameters can be controlled via the automatic gain control (AGC)
menu. The first is the AGC time constant, which can be Off (no AGC), Long,
Slow, Medium, and Fast. A very long AGC time constant protects your ears,
but it also means that the receiver becomes ,,deaf” for a rather long time
after a strong QRM burst. This phenomenon is known as ”AGC pumping”.

7.5. THE DIVERSITY MENU 67

Generally, if you do SSB on a quiet band, the AGC time constant can be
longer, for CW on the other hand, I personally prefer short time constants
(Medium or Fast).

The AGC Hang Threshold is only effective if the AGC time constant is Long
or Slow, since the AGC hang time is turned off for Medium and Fast. In
this case, the RX spectrum scope not only shows the ,,normal” AGC line in
green, but also the hang threshold line in orange.

Fig. 7.6: The AGC menu.

7.5 The Diversity Menu

Diversity is a very powerful tool to improve reception by using two different
antennas and two ADCs. To explain how it works, suppose you live in a house
which produces a lot of local QRM. Your ,,normal” antenna will pick up the
wanted DX signals, but also a lot of noise that originates somewhere in your
house. Now suppose you have a second receive-only antenna placed in your
house that will predominantly pick up your local QRM and only very little
DX signal.

68 CHAPTER 7. THE MAIN MENU: RX-RELATED MENUS

Fig. 7.7: The Diversity menu.

Of course, this RX-only antenna does not deliver anything useful at first sight.
But, imagine you could shift the phase and the amplitude of the signal of
the in-house antenna such that it exactly opposes the local QRM picked up
by your DX antenna! Adding this (phase shifted and amplitude adjusted)
signal from your in-house antenna to what comes from your DX antenna will
produce a signal where the local QRM is largely eliminated while the DX
signal is only weakly affected. This is what Diversity is all about.

Chapter 8

The Main Menu: TX-related
menus

Note that for RX-only radios, only the CW menu will be shown here because
there one can set the pitch of the CW side tone, which also affects the RX
,,BFO frequency”.

8.1 The TX Menu

The TX menu can be opened from the main menu, or just by a secondary
mouse click into the TX panadapter (while transmitting). The menu is shown
in Fig. 8.1.

Local Microphone. If this box is checked, the TX audio samples come from
a soundcard attached to the host computer, or from a virtual audio cable.
The sound device can be selected from the pop-down menu to the right. This
check box, and the pop-down menu, is absent if there are no output sound
devices available.

Note: If the radio has the possiblity to connect a microphone, and if PTT
comes from the radio, the radio microphone samples and the local (sound
device) microphone samples are mixed (added). This is very convenient if
one does SSB with a microphone attached to the radio, and digital modes
with a local sound device or virtual audio cable: when doing SSB, the local

69

70 CHAPTER 8. THE MAIN MENU: TX-RELATED MENUS

Fig. 8.1: The TX menu.

sound device normally produces no audio, and while pressing PTT at the
microphone, you can work SSB normally. So you can go from digital mode
to SSB without the need to change the microphone setup in the TX menu.

Compression (dB): With this box the TX compressor can be enabled/disabled.
The compression level (0-20 dB) can be chosen in the spin button to the right.

Note: The compressor on/off flag, as well as the compression level, is ,,stored
with the mode”. So it is possible to have the compressor enabled for SSB
(LSB/USB) and disabled for digi modes (DIGL/DIGU), and when switching
modes, the compressor settings for the new mode are automatically restored.

FM PreEmp/ALC. When transmitting FM, the audio input signals are ,,em-
phasized”. This means that from 300 to 3000 Hz (the usual range of audio
frequencies in amateur radio FM), there is a 6 dB per octave (20 dB per
decade) that leads to a 20 dB damping of an input signal at 300 Hz (8 dB
damping at 1200 Hz, and no damping ad 3000 Hz). This of course distorts
the audio, but the reverse process is built into FM demodulators to correct
for this. Because there is a lot of damping of the audio signal, piHPDSR
applies a 15 dB boost to the TX audio input samples when the mode is
FMN.

8.1. THE TX MENU 71

This boost is nearly ineffective if the FM pre-emphasis takes place after the
TX ALC stage, since the ALC will cancel most of the extra boost and the
FM modulation sounds ,,thin”. If the FM PreEmp/ALC box is checked, FM
pre-emphasis takes place before the TX ALC, such that the ALC ,,sees” the
TX audio input after applying both the boost and the damping of the pre-
emphasis. This gives the transmitted signal a little more ,,punch”. It is
generally recommended to have this box checked if doing FM.

Radio Mic: This text, and the pop-down menu to its right, only occurs if
a microphone can be connected to the radio. The pop-down menu lets you
choose between Mic In which means that a microphone can be connected
to the microphone input jack, Mic Boost, which additionally switches on a
hardware 20 dB mic amp, and Line In which means that the ”Line In” jack
of the radio is used for the audio samples transferred from the radio to the
host computer. This is part of the HPSDR protocol, it may well happen
that your radio has a microphone jack but no line-in input. The optional 20
dB preamp may be necessary when connecting a dynamic microphone whose
input level (few mV) is considerably lower that that of a condensor (electret)
microphone, or a dynamic microphone with built-in preamp.

TX Filter low: With this spin button you can set the low cut of the TX
filter. The frequency refers to the audio domain.

TX Filter high: With this spin button you can set the high cut of the TX
filter. The frequency refers to the audio domain.

Use RX Filter If this check box is enabled, the TX filter low/high cuts are
ignored, and the filter edges of the current RX filter are used instead.

Panadapter Low: This spin button sets the lower edge (in dBm) of the TX
panadapter.

Panadapter High: This spin button sets the upper edge (in dBm) of the
TX panadapter.

Panadapter Step: This spin button determines how many horizontal lines
are drawn on the TX panadapter. If set to 10, for example, there will be a
horizontal line for every multiple of 10 dBm.

AM carrier level: This sets the AM carrier level for the AM modulator.
If set to zero, there is no carrier and the signal is a DSB signal. A reasonable
value is 0.5 which leads to 100% modulation. Values larger than 0.5 have less

72 CHAPTER 8. THE MAIN MENU: TX-RELATED MENUS

than 100% modulation. This means too much power goes into the carrier.

Tune use Drive If this box is checked, TUNEing will be done with the power
that corresponds to the current position of the drive slider, and the tune drive
level is ignored.

Tune Drive Level The value that can be adjusted with this spin box is the
virtual position of the drive slider while TUNEing. This value is ignored if
the Tune use Drive box is checked.

SWR protection If this box is checked, a very simple SWR protection is
enabled. If the SWR exceeds the threshold value (see next point), the drive
slider is set to zero. The SWR protection is disabled while TUNEing.

SWR alarm at The spin button to the right determines the SWR threshold.
If the SWR is beyond the threshold, the SWR reported in the meter turns
red. If SWR protection is enabled, the drive slider is set to zero if the SWR
exceeds the threshold.

CTCSS Enable (FM only!) This checkbox enables/disables CTCSS (continu-
ous tone coded squelch system). If enabled, a low-frequency tone is transmit-
ted together with the normal TX audio. This can be used to trigger repeaters,
or any other function implemented on the other side. The frequency itself
can be chosen with the following menu point:

CTCSS Frequency This pop-down menu lets you choose the CTCSS fre-
quency. This choice has no effect if CTCSS is disabled. The frequency
list includes 38 standard TIA/EIA-603-D CTCSS frequencies between 67.0
and 250.3 Hz.

Max Drive for digi This spin button restricts the range of the drive slider
from 0 to the chosen value for the DIGU and DIGL modes. If the value is
100, this has no effect. The primary use of this menu point is PA protection,
since many digital modes (unlike SSB voice) are constantly transmitting at
full power.

Frames Per Second: This spin button determines how many frames per
second are drawn for the TX panadapter. The default value, 10, is a good
choice.

Fill Panadapter This is used to enable/disable the ,,Filling” option for the
TX spectrum scope (see chapter 3.2). No ,,gradient” option is available for
the TX scope.

8.2. THE PA MENU 73

8.2 The PA Menu

In the PA menu, you can adjust the output level of your HPSDR board to
the PA being used, and you can establish a calibration of the power begin
displayed in the meter section while transmitting. The menu presents itself
as shown in Fig. 8.2.

Fig. 8.2: The PA menu, PA calibration screen

In the first line, you can choose the maximum PA power of your radio. The
available values are 1, 5, 10, 30, 50, 100, 200, and 500 Watt. If your radio
has a different maximum power, choose the next largest value. The choice
of this value only affects the watt meter calibration (see below). If the box
Transmit out of band is checked, this allows piHPSDR to go TX if you are
outside of the amateur radio bands.

PA calibration. If the Calibrate sub-menu is active (as shown in Fig. 8.2)
you can adjust your HPSDR board to your PA. This has to be done for each
band separately, and you need a dummy load and a watt meter to do so.
Most watt meters used by radio amateurs are not highly accurate, so if you
can borrow an accurate one, do so. The PA calibration values are the fictious
amplification of the PA. If the value is increased, piHPSDR assumes a higher
amplification and will thus decrease the output power of the HPSDR board.

74 CHAPTER 8. THE MAIN MENU: TX-RELATED MENUS

Thus, increasing the PA calibration value will decrease the output power. A
calibration value of 38.8 dB corresponds to the maximum RF output of the
HPSDR board, so the allowed range of values starts at 38.8.

To start calibration, go to the TX menu and check the box Tune use Drive.
Then, hit the rightmost toolbar button until one of these buttons reads TUNE.
This way, when TUNEing, you send a carrier with the power according to
the drive slider. For each band, go to the middle of the band, open the PA
menu, put the drive (TX Drv) slider at 50 and hit the TUNE button. If the
output (measured with the Watt meter) is higher than half of your nominal
PA power, increase the PA calibration value of that band, otherwise decrease
it. Choose a value such that your Watt meter reads half the nominal output
power. For fine adjusting, move the drive slider to 100 and adjust the PA
calibration value until your Watt meter shows the nominal output power.
The calibration values will (slightly) differ from band to band, often one
needs smaller values for the higher bands since the amplification of the PA
is smaller there. If transverter bands have been defined via the XVTR menu,
they will also show up in this menu. Note that the PA calibration value
affects the level of the low-power TX output of the HPSDR board an thus
affects both the PA output (if the PA is enabled) as well as the low-power
TX output (if the Xvtr port is active as RX antenna).

Watt meter calibration. When PA calibration is complete, you can cali-
brate the power reading within the meter section of the piHPSDR window.
If you open the PA menu and click on the text Watt Meter Calibrate, the
menu changes and looks like in Fig. 8.3.

Note that for calibrating the Watt meter as well, Tune use Drive in the TX

menu must be checked to allow for high RF output power while TUNEing.

You have 10 Watt values from 1
10

to the full nominal power. Initially, the
values of the spin buttons beside the Watt ratings have the nominal value.
The calibration values can always be re-set to these nominal values by hitting
the Reset button. Watt meter calibration is not done seperately for all
bands, so it is suggested to perform the following procedure on the 20m
band. piHPSDR will convert the ,,measured” into the ,,reported” value by
linear interpolation between two adjacent calibration values.

Start with resetting the value by hitting the Reset button. Then, move
the drive slider to 100 (the unit of the drive slider is per cent, not Watt!)

8.2. THE PA MENU 75

Fig. 8.3: The PA menu, Watt meter calibration

and hit TUNE in the toolbar. After the PA calibration described above, your
(external) Watt meter should show the nominal PA output power (e.g. 100
Watt for an ANAN-7000). Now look at the forward power reported in the
meter section (top right of the piHPSDR window). Suppose you read ”250
W” there although your output is 200 Watt. Then simply insert the number
250 in the spin button to the right of the string 200W. Now your watt meter
reading should be close to 200W, you can fine-tune it with the spin button.
Note that increasing the calibration value with the spin button will decrease
the power indicated in the meter section.

You will observe that the calibration values for the lower powers also have
changed. This only happens if you start from nominal calibration values
and change the calibration value of the highest power. For example, if you
have entered 250 in the 200W spin button, then the value in the 100W spin
button will read 125. So in a single shot, you have roughly calibrated the
Watt meter.

A finer calibration only makes sense if you have a highly accurate Watt meter,
since the (uncalibrated) reading in piHPSDR may actually be more accurate
than your Watt meter. Using your highly accurate Watt meter, you can now
move the drive slider until your Watt meter exactly reads one of the lower

76 CHAPTER 8. THE MAIN MENU: TX-RELATED MENUS

power values, and use the corresponding spin button to change the calibration
until piHPSDR exactly reports the correct power. The procedures is virtually
the same if our nominal output power is different. The only complication
arises if your radio has a nominal power that is not in the menu, for example
150 Watt.

In this case, choose 200W (the next largest value) in the top line of the
PA menu. TUNE and move the drive slider until your Watt meter reads
the largest value possible that occurs in the Watt meter calibration menu
(in this example, it is 140W). Adjust the 140W spin button until piHPSDR
reports 140 Watt. Then go to full power (150W) and adjust the 200W spin
button until piHPSDR reports 150 Watt. Then, proceed with 120, 100, 80,
etc. Watts.

8.3 The VOX Menu

VOX (voice control) means that you can just speak into the microphone and
the radio goes TX, without the need to press a PTT button. VOX can also
be used in digital modes, if there is no possiblity that the digimode program
can put piHPSDR into TX mode via CAT commands or hardware lines. The
VOX menu is shown in Fig. 8.4.

With the VOX Enable check box, you can enable/disable VOX. For VOX
operation, there are two parameters, namely the VOX threshold and the
VOX hang time. The VOX threshold is the microphone amplitude required
to trigger a RX/TX transition. If the radio goes TX when the neighbour’s
hound starts barking, then the VOX threshold is too small. If the radio does
not go TX although you speak loudly into the microphone, the threshold is
too large. The VOX menu features an indicator which can be green or red (in
Fig. 8.4, this is the green bar). This indicator flashes red if the microphone
amplitude is above the VOX threshold. Adjust the threshold with the slider
such that the indicator becomes red if you speak into the microphone, but
stays green if you don’t speak.

The VOX hang time determines how long the radio stays in TX mode after
the last time the microphone delivered a signal that was above the VOX
threshold. Typical values are 250 to 500 milli seconds. If your radio produces
relay chatter because it goes RX between your words, increase the hang time.

8.4. THE PS (PURESIGNAL) MENU 77

Fig. 8.4: The VOX menu

However, this will also increase the turn-around between you finished your
message and go RX.

VOX is very nice for rag-chew phone QSOs, I won’t recommend it for contest
operation.

8.4 The PS (PureSignal) Menu

PureSignal is the ,,street name” for adaptive pre-distortion. What this means
is, that the signal from the output of the PA (the ,,antenna signal”) is cou-
pled back (through an attenuator of typically 40-60 dB) to the radio and
is analyzed whether is looks like it should. If it is distorted (e.g. by non-
linearities of the PA), then the PureSignal algorithm calculates how an input
signal to the PA should look like to produce the desired output. This is usu-
ally measured and calibrated with a so-called two-tone experiment. In this
experiment, two constant carriers, for example 7100 kHz and 7101 kHz, are
transmitted. If both carriers contain 25W power, this is a 100W PEP signal.
Non-linearities of the PA first lead to the occurence of harmonics (in this
case around 14.2, 21.3, and 28.4 MHz). This is not a problem because such

78 CHAPTER 8. THE MAIN MENU: TX-RELATED MENUS

Fig. 8.5: The PureSignal (PS) menu

harmonics are damped by the TX low-pass filters. Higher-order non-linear
effects, however, lead to additional in-band signals, in our example they oc-
cur at 7102/7099, 7103/7098 etc. kHz. The low-pass filters cannot eliminiate
these signals, they lead to unwanted signals (,,splatter”) that disturb QSOs
on neighbouring frequencies. With PureSignal, you can greatly reduce these
un-wanted signals. If you open the PS menu for the first time it looks like
shown in Fig. 8.5.

The elements have the following function:

Enable PS With this check box, PS can be enabled/disabled.

Two Tone With this button, a two-tone experiment can be started/stopped.
The button will be highlighted as long as the two-tone signal is transmitted.

Auto Attenuate This enables/disables automatic adjustment of the RF in-
put attenuator to give the feedback level the correct strength. It is highly
recommened to use this option.

OFF With this button, the PS correction can be stopped (the status will
then change to RESET).

Restart With this button, the PS correction can be resumed, for example

8.4. THE PS (PURESIGNAL) MENU 79

after it has been stopped.

MON With this button, it can be chosen whether the TX spectrum scope
shows the signal sent to the PA (MON button not highlighted) or whether
the feedback signal from the antenna is shown (MON button highlighted).

PS Feedback ANT Here it must be specified which antenna jack is used for
the PS feedback signal. It can be Internal which means internal feedback
(for example as built into the Anan-7000 or simply the cross-talk from the
TX/RX relay), or it can be Ext1 or ByPass which refers to the auxiliary
antenna jacks.

PS MAP This box controls the PURESIGNAL ,,Map mode” and is normally
checked. According to the WDSP manual, changing the Map mode allows
easier calibration in situations where a very poor PA is driven into heavy
gain compression. This box has no effect if there is no compression.

PS Relax Tolerance This box is normally unchecked which means that the
default value 0.8 is used for the PURESIGNAL calibration tolerance. If
checked, this tolerance is reduced to 0.4. According to the WDSP manual,
relaxing the tolerance my be helpful for PAs with a very poor load regulation
in the power supply such that there are severe and slow memory effects.

Feedback Lvl When doing a PS calibration through a two-tone experiment,
this string turns red if the feedback level is good. It turns yellow if the
feedback level is slightly to weak and read if it is too weak. A blue colour
indicates a too string feedback level. The feedback level reported by the PS
calibration algorithm is further reported in the ,,feedbk” field. The optimum
value is about 154.

Correcting When doing a PS calibration through a two-tone experiment,
this string is green if calibration was successful and PS correction takes place,
and the string is red if no good calibration could be made.

TX ATT If Auto Attenuate is not enabled, this is a spin button with which
you can manually adjust the RF attenuation. For normal HPSDR radios,
this is a value between 0 and 31, other radios such as the HermesLite have
an extended range from -29 to 31. If the feedback level is too strong, this
value must be increased, if it is too strong, it must be decreased. It is,
however, recommended to enable Auto Attenuate. In this case, the TX ATT

just shows the current attenuation. Note that this attenuation value is only
effective if PURESIGNAL is enabled. If not, the RF input attenuators are set

80 CHAPTER 8. THE MAIN MENU: TX-RELATED MENUS

Fig. 8.6: PS: TwoTone without MON

to maximum attenution while transmitting, if the PA is enabled.

SetPk This field shows the currently assumed value of the peak value of the
TX DAC feedback signal. piHPSDR chooses is automatically, depending on
the radio hardware. The standard value for P1 and P2 radios are 0.407 and
0.290. Notable exceptions are the HermesLite-II running P1 (SetPK=0.240)
and the Anan-G2 running P2 (SetPK=0.612). The SetPK value is deter-
mined by the FPGA firmware of the radio can can experimentally be deter-
mined by comparing the outgoing TX and the incoming TX feedback signal.
It should match the value reported by the calibration algorithm in the GetPk
field. The value chosen by piHPSDR can be incorrect if you use a highly ex-
perimental firmware on your HPSDR board with modified TX DAC filters,

8.4. THE PS (PURESIGNAL) MENU 81

Fig. 8.7: PS: TwoTone with MON

but this should normally not happen.

To demonstrate what happens, I show an example performed with a HermesLite-
II radio running P1. Checking both Enable PS and Auto Attenuation, and
hitting the Two Tone button, it needs only few seconds to stabilize and then
Fig. 8.6 results, where the TX spectrum scope and the PS menu window
have been arranged such that they do not cover each other. Although both
the PS menu and the spectrum scope state that PS is working and correcting,
the signal does not look good: a two-tone signal should only have two peaks,
but here one sees the two main peaks at −6 dBm and two IM3 satellites at
about −42 dBm. The reason is, that the TX spectrum scope normally shows
the signal that is sent to the PA, so we see a distorted signal. However this

82 CHAPTER 8. THE MAIN MENU: TX-RELATED MENUS

Fig. 8.8: PS: after hitting OFF

distortion is magically exactly such that the PA makes a nice signal out of
this (adaptive predistortion). If one wants to see what the antenna is actually
transmitting, one must push the MON button such that it is highlighted. This
is shown in Fig. 8.7, where one sees the feedback signal, that is, what the
PA sends to the antenna. This is a much cleaner two-tone signal (the first
satellites are at −56 dBm, the IM3 value is about −50 dBc). To demonstrate
how effective the PS algorithm is, I have pushed the OFF button which stops
the PureSignal calibration, the result is shown in Fig. 8.8. After hitting that
button, IM3 satellites immediately grow and rise to about −40 dbM (which
means IM3 about −34 dBc), which is s reflects the intrinsic non-linearity
of the PA. Note that this is a very good value, unless you have a class-A

8.5. THE CW MENU 83

amplifier, your PA probably won’t be much better. This shows that adap-
tive predistortion is a mechanism that allows you to produce a clean signal
with a quality that would be impossible (or very difficult) to achieve with
traditional hardware.

8.5 The CW Menu

The CW menu controls parameters related to CW operation. The menu is
shown in Fig. 8.9.

Fig. 8.9: The CW menu

Many radios have a connection for a paddle or at least for a straight key, and
contain firmware to do CW. CW handling by the radio firmware is enabled by
the CW handled in Radio check box. If unchecked, CW (that is, generating
and forming the RF pulses) is done by piHPSDR. For most radios, you can
still use the Morse paddle connected to the radio since the radio sends the
dash/dot paddle press events to the host computer, but it is more versatile
to connect a Morse paddle, straight key or an external keyer is connected to
the host computer (see Appendix E).

84 CHAPTER 8. THE MAIN MENU: TX-RELATED MENUS

CW Speed. Here the speed (in wpm) can be chosen. If CW is handled in
the Radio, the value is simply sent to the radio firmware, which implements
the (iambic) keyer. If CW is done within piHPSDR, this value is used by
piHPSDR’s built-in iambic keyer. If using a straight key, or an external keyer
whose output is then treated like a straight key, the speed has no meaning.

In either case, this speed is operative when sending CW text via CAT com-
mands (KY comand), and it can also be changed by CAT (KS command).

CW Break-In This implements some sort of ,,CW-VOX”. In break-in mode,
the radio is automatically switched to TX when a key or paddle is pressed.
The delay, to be set by the spin button to the right, is the time the radio
goes RX after the last Morse key closure.

Sidetone Level. This is the level of the side tone, either generated by
the radio (if CW is handled there and the radio has an audio codec) or by
piHPSDR (if CW is not handled in the radio). The allowed range is 0-255
(P1) or 0-127 (P1 or SoapySDR).

Sidetone Freq. This is the frequency of the side tone and the ,,BFO offset”.
That is, if a CW signal is received exactly at the frequency one transmits on,
the CW audio signal has this pitch.

Weight: If using a iambic keyer (either in the radio or the builtin keyer),
this value (0-100) determines the dash/dot ratio. The normal value is 50,
which means that a dash is three times longer than a dot. The dash length is
proportional to this value, so it can be from zero to six times the dot length.

Paddle Mode: Here the choice is Iambic Mode A, Iambic Mode B, and
Straight Key. In Straight Key mode, the key has to be connected to the
dash paddle, since the built-in keyer implements a bug mode there (automatic
dots from the dot paddle, straight key behaviour for the dash paddle). When
using an external keyer, use StraightKey mode and connect the keyer output
to the dash paddle input.

Keys reversed When checking this box, the dot and dash contacts are re-
versed.

Enforce letter spacing This option forces you to give ,,cleaner” CW when
in iambic mode. If at the end of an inter-element pause no key is pressed,
then there is a forced pause of two times a dot length. While this prevents you
from sending too short spaces between two letters, this might also corrupt a

8.5. THE CW MENU 85

letter you want to send. For example, when sending the letter ”X” and the
dot paddle is pressed a little too late, you instead send ”TU”. This option
might be good for practising, but I personally never use it.

86 CHAPTER 8. THE MAIN MENU: TX-RELATED MENUS

Chapter 9

The Main Menu: menus for RX
and TX

9.1 The DSP (Signal Processing) Menu

Fig. 9.1: The DSP menu.

The DSP menu sets parameters related to DSP (digital signal processing)

87

88 CHAPTER 9. THE MAIN MENU: MENUS FOR RX AND TX

within the WDSP library. Filter characteristics can be specified separately
for the RX1 (and RX2, if running two receivers) and TX (if the radio does
have a transmitter) filters. In addition, enabling/disabling binaural receiver
audio is done here. Most users will very rarely need to invoke this menu,
which is shown in Fig. 9.1.

Filter Type. Digital filters can be designed such that a signal within the
passband leaves the filter in a shape as similar as possible to what went into
the filter. This requires that the phase difference between input and output
signal is a linear function of the frequency. Another desirable property of a
linear filter is that the time delay between a signal going into a filter and
what comes out is as small as possible. Unfortunately there some sort of
uncertainty relation between these two properties, so you only can trade
one for the other. The options for the filter type are thus Linear Phase

or Low Latency. But note that there is a lot of latency in the HPSDR
data processing which you cannot avoid, so ,,low” latency is not really low.
Therefore, the default option is Linear Phase, and there should be little
reason to change this.

Filter Size. This is the number of ,,taps” of the digital filter. Increas-
ing this size will inevitably increase the latency, but makes the filter edges
steeper. The allowed values are powers of 2, and the minimum value equals
the buffer size, which is hard-coded in piHPSDR to be 1024 (except for the
transmitter in P2, where it is reduced to 512). The default value of 2048
should be fine in almost all cases, if you increase it, you can notice that the
filter edges become little more ,,brick wall” like.

Binaural The RX audio signal by default is a mono signal. Although you
have the RX audio signal on both ears if using a headphone, both the left
and right channel are the same. Checking Binaural for a receiver implies
that its RX audio signal is stereo (left and right channel differ). This is
accomplished by copying the primary I and Q signal of the RX output to the
left and right channels instead of using the I signal for both ears (which is
the default). Some users report that in modes such as CW and SSB, binaurel
audio is more pleasant than the default. It is up to the user to try and set
this parameter according to personal preferences. This checkbox is available
for all receivers but not for the transmitter.

9.2. THE EQUALIZER MENU 89

9.2 The Equalizer Menu

In the Equalizer menu, you can modify the frequency response of the RX
and TX audio. You can adjust the RX equalizer to your personal preferences
for listening to the RX audio. The TX equalizer affects your transmitted
signal. You can, for example, provide some extra amplification to the low-
frequency part of your voice. The menu is shown in Fig. 9.2.

Fig. 9.2: The Equalizer menu

Using Enable RX Equalizer and Enable TX Equalizer, you can individu-
ally enable/disable the RX and TX equalizer. If the RX equalizer is enabled,
the EQ indicator in the VFO bar, upon receiving, turns yellow and reads
RxEQ. If the TX equalizer is enabled, this indicator turns yellow while trans-
mitting and reads TxEQ. So while receiving, you cannot tell, from the VFO
bar, whether the TX equalizer is actually enabled or not!

For both equalizers, there are four sliders which affect the overall gain (Preamp),
and the amplification in the low/mid/high frequency range. Equalizer set-
tings are saved with the mode, so if you adjust the Equaliziers when doing
SSB, and then switch to DIGU, the equalizers are disabled and they resume
their SSB settings upon going back to LSB/USB. This also applies to other
modes such as CWU/CWL, where the TX equalizer has no meaning any-

90 CHAPTER 9. THE MAIN MENU: MENUS FOR RX AND TX

way, and where the RX equalizer is normally not needed because CW filters
usually are narrow.

For RX-only radios, the TX part of the equalizer menu is not shown.

9.3 The Ant (Antenna) Menu

The Ant menu, as shown in Fig. 9.3, applies to HPSDR radios. For SoapySDR
radios, the layout is much simpler because there are much fewer choices pos-
sible.

Fig. 9.3: The ANT (antenna) menu.

Standard HPSDR radios have, in most cases, three main antenna jacks de-
noted Ant1, Ant2, Ant3, which can be used both for receiving to the first ADC
and transmitting. Then there are up to additional antenna jacks (Ext1, Ext2,
and Xvtr) which can only be used for receiving and are also connected to
the first ADC. If the radio has more than one ADC, the (RX only) antenna
jack, usually denoted RX2, is hard-wired to the second ADC.

If the menu is opened, the HF button is checked, and the HF bands are
displayed. If one checks the XVTR button, the transverter bands are shown

9.3. THE ANT (ANTENNA) MENU 91

(this leads to an empty window if no transverter bands have yet been defined),
and one can go back to the HF bands by re-checking HF. For each band, one
can now choose one (out the three) antennas for transmitting and one (out
of six) antennas for receiving. The main purpose of this is the possibility
to connect an additional receive-only antenna such as a beverage antenna
which often has a better signal-to-noise ration than standard antennas used
for transmitting.

Transverter operation. Newer radios (Anan-7000, 8000, and Saturn/G2)
have a switchable low-power TX output. This is enabled if Xvtr is selected
as the RX antenna of RX1. The connector used for low-power TX output
can also be used for receiving.

——– Attention, potential damage! ——–

A problem that may potentially damage your external hardware occurs
if you use one of the antennas Ant1/2/3 for receive and another for
transmit. This is especially true if you have sensitive hardware (such
as an active RX antenna) connected to the Ant jack used for RX and
operate CW with the Key attached to the radio with the CW handled

in Radio box checked in the CW menu.
In this case, starting CW transmission lets the FPGA (processing unit
inside the radio) put the radio into TX mode, start forming the first
RF pulse, and informs the host computer running piHPSDR that a
RX/TX transition has been made.
Only then, piHPSDR can start telling the radio to switch the relays
that connect the Ant jacks with the TX circuitry.
As as result, a small part (few milli-secs) of the first RF pulse (dot or
dash) may appear at the Ant jack used for RX only. If, say, an active
antenna is connected there, this may well destroy the active antenna.
Even if not using CW this way, it cannot excluded that Ant relay
switching is so slow that such ,,RF spikes” appear at an Ant jack in-
tended for RX only.

If possible, use the Ext1/Ext2/Xvtr jacks for connecting active RX
antennas.

92 CHAPTER 9. THE MAIN MENU: MENUS FOR RX AND TX

9.4 The OC (OpenCollector) Menu

Fig. 9.4: The OC (open collector) menu.

Standard HPSDR radios have seven individually programmable outputs wired
as open collector output. In the OC menu, you can specify, separately for each
band, and separately for receive and transmit, which output should be ,,set”.
This can be used to switch the band filters of an external PA or of an exter-
nal RX preselector, to control an automatic antenna tuner, and many more
things, since it is your external hardware which in the end has to make sense
of the output bit pattern.

For non-HPSDR radios, the OC menu does not appear in the main menu.

To facilitate control of an automatic tuner, there are seven TUNE bits which
are ORed with the bit pattern chosen for TX on the actual band, as long
as you are TUNEing with piHPSDR. Besides the TUNE action, there are
the Full TUNE and Memory Tune actions which are functionally equivalent,
except that the open collector tuning pattern is removed for Full Tune after
the full tune delay, and for Memory Tune after the memory tune delay, which
can also be specified in this menu. This can be used to send short tuning
pulsed of varying length to the external automatic tuner at the beginning of
the tuning.

9.4. THE OC (OPENCOLLECTOR) MENU 93

Note that if you have chosen the N2ADR filter board (see the Radio menu, this
is usually the case if you are working with a HermesLite-II radio), then the
necessary OC settings for this filter board are enforced upon program start.
The same applies if you enable the N2ADR filter board in the Radio menu.

94 CHAPTER 9. THE MAIN MENU: MENUS FOR RX AND TX

Chapter 10

The Main Menu: controlling
piHPSDR

In this chapter, the customization of the toolbar (at the bottom of the piH-
PSDR window), as well as how to configure GPIO and MIDI controllers, is
described. Furthermore, in this chapter we discuss the RIGCTL menu which
allows controlling piHPSDR by some external program such as a logbook
or contest program, via standardized CAT commands that can be sent to
piHPSDR either over a serial line or via TCP.

Note for Controller1 owners: The eight switches (push-buttons) of the
controller, that a positioned below the screen, are bound to the eight tool-
bar buttons on the screen. Therefore, there is no ”Switches” menu for this
controller, and the switches are implicitly configured via the Toolbar menu.

10.1 The Toolbar Menu

We start with the ”Toolbar” menu, that can be found at the top of the
rightmost column in the main menu. The toolbar consists of eight buttons
that can be assigned to a set of eight functions. There are six such sets, and
pressing the rightmost button of the toolbar cycles through these six sets.
The text on the rightmost toolbar button, FNC(0), indicates which layer is
currently active.

95

96 CHAPTER 10. THE MAIN MENU: CONTROLLING PIHPSDR

Fig. 10.1: The Toolbar menu, just opened.

Fig. 10.2: Toolbar menu. Changing second button in F1 layer.

If the Toolbar menu is opened, is looks like Fig. 10.1. The rows correspond
to the six different layers, and the rightmost button in each row indicates to

10.1. THE TOOLBAR MENU 97

which layer this row belongs. If one now clicks (just an example) the CTUN

button (third button in the second row) an ,,action dialog” pops up that
looks as in Fig. 10.2.

Fig. 10.3: Just selected Band20.

The current action selected (CTUN) is high-lighted. Lists of possible actions
can be rather long, so it might be necessary that you have to scroll up or
down in such an action dialog until you have found what you were looking
for. Now (again just an example) the button Band 20 has been clicked in
the action dialog, such that it gets high-lighted (Fig. 10.3).

If one now closes the action dialog by clicking the OK button, the action
select menu closes and on sees that in the toolbar menu now reappearing
(Fig. 10.4), the third button in the second line of the toolbar menu has
changed, it now gives the short text (20) of the action, which will switch
the active receiver to the 20m band (see the explanation of all the actions in
Appendix A).

You also see that the toolbar itself has not changed, because we have just
changed the FNC(1) set, while currently the FNC(0) set is active. If one
now, however, clicks the rightmost toolbar button with the text FNC(0) one
advances to the next set and the toolbar labels are updated (Fig. 10.5).

98 CHAPTER 10. THE MAIN MENU: CONTROLLING PIHPSDR

Fig. 10.4: Toolbar assignment accomplished.

Fig. 10.5: The new F1 layer is operative.

It can be seen that the text of the first seven toolbar buttons has changed
to reflect the functions of the F1 set, and also the rightmost button (which

10.2. THE RIGCTL (RIG CONTROL, OR CAT) MENU 99

is always mapped to Function) has changed to FNC(1) in oder to indicate
the F1 layer is now active. For mouse users (only), a secondary click on the
rightmost toolbar button cycles through the layers in in reverse order.

Note that it is not possible to change the assignment of the rightmost button
of the toolbar, it will always be assigned to Function, since if one has no
access to this function, one is stuck and can no longer cycle through the
function layers.

10.2 The RigCtl (Rig control, or CAT) Menu

piHPSDR has a built-in rig control or CAT (computer aided transceiver)
facility. This can be used to control piHPSDR from other programs or even
other computers. You can have up to three simultaneous CAT connections
via TCP, and two additional CAT connections via serial lines (provided the
host computer running piHPSDR has those serial interfaces available). It is
also possible to use FIFOs (also known as named pipes) instead of real serial
devices, which offers a hardware-free connection of, say, a logbook program
running on the same computer to piHPSDR, even if the logbook programm
cannot use TCP. On my Macintosh computer for example, using a named
pipe and the Kenwood TS-2000 radio model, I can connect the MacLog-
ger DX logbook program with piHPSDR. piHPSDR fully supports (thanks
Rick!) the ANDROMEDA controller (see github.com/laurencebarker/

Andromeda front panel). This controller (or rather the Arduino inside) is
connected to the host computer via USB and appears as a USB-to-serial de-
vice on the host computer. The CAT command set is explained in Appendix
D. In most cases, using the Kenwood TS-2000 as the radio model would do
it, if the digimode or laptop program uses hamlib to interface with radios,
either choose TS-2000 or (preferably) the ,,OpenHPSDR PiHPSDR” radio
model because this uses time- out values adapted to piHPSDR. The RigCtl

menu is shown in Fig. 10.6.

RigCtl TCP Port. This sets the TCP port number for CAT connection to
TCP. The default value (19090) is rather standard, using another one is
only necessary if you are running more than one SDR program on the host
computer at the same time. This port number must match the port number
used in the (digimode or logbook) program that wants to connect. This value

100 CHAPTER 10. THE MAIN MENU: CONTROLLING PIHPSDR

Fig. 10.6: The RigCtl (Rig Control) menu.

has no meaning for serial (or named pipe) connections.

RigCtl Enable. This checkbock enables or disables the piHPSDR CAT
subsystem. Disabling it automatically also disables all serial ports.

Debug. If enabled, the piHPSDR CAT subsystem sends lots of debug mes-
sages to the standard output. If piHPSDR is run from within a terminal
window, these messages appear in the terminal window. If it is run from
double- clicking a desktop icon, these messages can be found in a log file
within the piHSPDR working directory (this is the directory where the pref-
erences are stored. This checkbox is only of interest for software developers
to analyze programming or connection errors, and should not be checked for
normal use.

Serial Port. In this text field, enter the device name of the serial port or the
named pipe to use. Which names to use is highly operating system depen-
dent. On a RaspPi, built-in serial ports have names such as /dev/ ttyACM0.
USB-to-serial adapters (which are nowadays the standard way to add se-
rial ports to a computer) have names such as /dev/ttyUSB0 (on RaspPi) or
/dev/tty.usbserial-.... (on MacOS). piHPSDR does not try to ,,detect”
serial ports, you must know the proper name (e.g. by looking at the contents

10.3. THE MIDI MENU 101

of the /dev directory). Named pipes can be created everywhere in the file
system hierarchy using the command ,,mkdir -p <some arbitrary name>”.

To the right of the serial port text field, there is a pop-down menu for choosing
the baud rate. Only 4800, 9600, 19200, and 38400 baud are offered, but
this should cover most cases. Then, further to the right, is the Enable

button which enables a CAT connection on that serial line. Finally, there is
the Andromeda check box which should be checked if that serial port is an
ANDROMEDA controller.

If you enable Andromeda, the baud rate is automatically set to 9600 baud, and
you cannot change this until you disable Andromeda. If you change the baud
rate for a serial port that is already in use (enabled), the serial connection
is closed and re-openend (disabled and enabled). This also applies if you
enable Andromeda for a running serial connection with a baud rate different
from 9600 baud.

The only effect of enabling Andromeda, besides fixing the baud rate to 9600
baud, is that the ANDROMEDA software version is requested (and put into
the piHPSDR log file) once, and that status information is sent over the serial
line such that the LEDs of the ANDROMEDA controller always reflect the
current status of piHPSDR.

10.3 The MIDI Menu

MIDI (musical instrument digital interface) is a protocol designed for the
communication of musical instruments, such as keyboards and tone genera-
tors. Because of its widespread use, support in all major operating systems,
and it inherent ability to deliver real-time ,,events”, it is also an ideal protocol
to control an SDR program. The only MIDI messages piHPSDR processes
are NoteOn, NoteOff, and ControllerChange messages. Typically, a NoteOn
message is sent if a key on a keyboard is hit. The first parameter of a No-
teOn/Off message is the key it refers to. Although keyboards rarely have
more than 88 keys, the allowed range for the key is 0-127. There is an ad-
ditional parameter (,,velocity”, range 0-127) that tells how fast the key has
been hit (this makes the difference between a soft and loud tone on the pi-
ano). NoteOn/Off messages are ideally suited for indicating button press
and release events. In principle, piHPSDR does not need the velocity. How-

102 CHAPTER 10. THE MAIN MENU: CONTROLLING PIHPSDR

ever, several MIDI consoles, in a sloppy interpretation of the MIDI standard,
send a NoteOn value with zero velocity if a button is released. Therefore,
piHPSDR interprets a NoteOn message with a velocity different from zero as
a ,,button press”, and interprets both a NoteOn messages with zero velocity
and a NoteOff message as a ,,button release”.

The original MIDI standard was built upon a daisy-chained serial connection.
Each device echos all messages it receives at its input side to the output.
Therefore, a key-down message that originated on one keyboard is sent to
all tone generators. Likewise, a tone generator receiving a key-down message
cannot tell from which device the message was originally sent. To resolve
possible conflicts, each MIDI message contains a channel number. There is
some confusion about channel numbers: the MIDI says channel numbers go
from 1 to 16. Because this is encoded in a 4-bit data field whose numerical
value goes from 0 to 15, computer users normally refer to channel numbers
from 0 to 15, and this convention is also followed by piHPDSR. Different
channel numbers can be used to discriminate MIDI events from different
sources (devices). An example of such a setup is if you connect a DJ console
as well as a microcontroller to which a CW key is attached.

The second type of messages are ControllerChange messages. Typically, they
report the value of an expression pedal, if it has changed. A ControllerChange
message also has two parameters, namely the number of the controller (0-
127) and the value (0-127). A ControllerChange message could be sent if the
MIDI controller has a potentiometer, to report its position, encoded from
0 (full counter clock wise) to 127 (full clock wise). Such a message could
then be used to control in piHPSDR, say, the AF volume or the TX drive.
Such a potentiometer is not suited to become a ,,VFO knob”. Here one
uses rotary encoders, a piece of hardware which you can turn (as long as
you like) in either direction, and which reports (by hardware pulses) how
fast and it which direction it is turned. Unfortunately, there is no standard
how to encode these increments into MIDI ControllerChange messages. My
Behringer CMD-PL1 console, for examples, uses ControllerChange numbers
65, 66, 67, . . . for clockwise rotations and 63, 62, 61, . . . for counter clock
wise rotations, and further encodes the speed of rotation in how far the value
differs from 64. Other brands interpret the 7-bit number as a signed quantity,
such that values 0, 1, 2, . . . correspond to clockwise, and numbers 127, 126,
125, . . . to counter-clockwise rotations. It is clear that the piHPSDR MIDI
configuration menu must be flexible enough to handle all these situations.

10.3. THE MIDI MENU 103

Fig. 10.7: The (virgin) MIDI menu.

From this it is clear that within piHPSDR, we have to distinguish three types
of sources of MIDI commands:

KEY. This type is generated by NoteOn/Off MIDI events. piHPSDR functions
(,,Actions”) that can be assigend to this type are typically those which can
also be assigned to toolbar buttons.

KNOB/SLIDER. This type is generaged by ControllerChange MIDI events. It
can be used for piHPSDR functions that are usually controlled by a slider,
such as adjusting the AF volume, setting the TX drive, setting the AGC
gain, etc.

WHEEL. This type is also generated by ControllerChange MIDI events. This
means that if such an event is configured, the user has to decide whether
this event originated from a potentiometer or from a rotary encoder. The
prototypical piHPSDR function controlled by a WHEEL is a VFO knob,
which you can spin forever. However, you can also assign to to the AF volume
control. piHPSDR takes care that the AF volume stops at the extreme cases
(-40 and 0 dB for AF volume) even if you continue spinning.

The first kind of MIDI device which is often used for SDRs are the so-called
MIDI DJ consoles. If you search the internet for ,,Hercules DJ controller” or

104 CHAPTER 10. THE MAIN MENU: CONTROLLING PIHPSDR

,,Behringer DJ controller” you will find lots of examples. For a very decent
price, you can obtain a device which features lots of controls which you can
conveniently use as VFO knobs, smaller knobs for controlling the AF volume
etc., and push buttons to be used, for example, instead of toolbar buttons.
The second kind of MIDI devices are small MIDI-capable microcontrollers,
starting with Teensy and Arduino devices which have a 32U4 microcontroller
which has built-in MIDI capability. With such a microcontroller, you can
build your own ”DJ controller”. Let the 32U4 control lots of push buttons
and rotary encoders, and send the MIDI messages via USB to the computer.
Using such a micro controller is also the most convenient and general way to
connect a Morse key or paddle to the host computer running piHPSDR (see
Appendix E, you can but need not use the same micro controller for taking
care of the buttons/encoders and the CW key).

If you open the MIDI menu for the first time, it presents itself as shown in
Fig. 10.7.

At the top of the menu, besides the close button, you find a list of MIDI
devices in the system, each of which with a check box. In Fig. 10.7, there
is only one such device with name ,,CMD PL-1 MIDI 1”. You will find all
MIDI devices attached to the host computer here. With the check box(es),
enable those you want to use. This way it is possible to run two instances
of piHPSDR on the same computer, both connected to different radios, and
control them independently with two different MIDI consoles. The first thing
you have to do is to check all MIDI devices you want to use.

It is important to note that as long as the MIDI menu is open, piHPSDR
cannot be operated through MIDI. Instead all MIDI messages are captured
by the menu and displayed. This is used to implement a ,,self-learning”
configuration. To explain this in detail, we demonstrate how to configure
MIDI such that the big wheel on the controller is used as a VFO knob. After
I have activated the checkbox of our MIDI device, I just turned the big wheel
of the MIDI console a bit. This resulted in a menu window that is shown
in Fig. 10.8. In the third line, below Event, you see CTRL which indicates
that the last MIDI messages received was a ControllerChange message. In
the case of a NoteOn/Off messages, this field would read NOTE. You should
rotate the knob in both directions to see what happens: below Value the
ControllerChange value of the latest message is recorded, while the Min and
Max fields report the smallest and largest value seen (all in the range 0-127).

10.3. THE MIDI MENU 105

Fig. 10.8: The MIDI menu, VFO wheel turned.

By playing around, it became quickly clear that this is a rotary encoder,
sending messages in the range 65, 66, 67, . . . for clockwise rotation and values
63, 62, 61, . . . for counter clockwise rotation. If it were a potentiometer,
you would see values between 0 and 127 depending on the position of the
potentiometer.

Below Channel, you see the value zero which indicates that the channel
number of that MIDI message was 1 (see above on the different channel
numberings). Below Type, you see a pop-down menu, here you can choose
between WHEEL and Knob/Slider. In the example shown, it must be a WHEEL

since this is a rotary encoder. Because there is no standard how the values
map to increments, a separate panel Configure WHEEL parameters pops up
when a wheel is to be configured. Here one has to define ranges of values
that apply for very fast left turns, fast left turns, normal left turns, normal
right turns, fast right turns, and very fast right turns. Specifying an interval
from −1 to −1 means that this case will never be realized. In the example
shown (Fig. 10.8), we have chosen to map all values from 0-63 to a left turn,
and all values from 65-127 to a right turn.

Now we have to specify which piHPSDR function should be triggered when
moving the wheel. The current action is shown in a button below the string

106 CHAPTER 10. THE MAIN MENU: CONTROLLING PIHPSDR

Fig. 10.9: The MIDI menu, selecting VFO action

Fig. 10.10: The MIDI menu, VFO action selected

Action and defaults to NONE. By clicking this button, a dialog to choose
the function opens as described for the Toolbar menu (chapter 10.1), with

10.4. THE ENCODERS MENU 107

the current choice (NONE) highlighted. The only difference is that now only
functions are listed that can be assigned to encoders. Because we want to
assign the wheel to the VFO function, we click the VFO button, which then
becomes highlighted (Fig. 10.9).

Then one has to click the OK button to make the choice, and one returns to
the MIDI menu (see Fig. 10.10).

One sees that the choise has entered the MIDI configuration, as documented
by the list in the bottom right part of the menu. At this stage, we can
continue assigning more encoders, potentiometers, or buttons. If we close the
menu at this point, then the big wheel on the MIDI console can immediately
be used to change the VFO frequency.

10.4 The Encoders Menu

Fig. 10.11: A picture of the G2 frontpanel (image courtesy of Apache Labs).

The encoders menu can be used to assign functions to the encoders of a
piHPSDR Controller1, Controller2 or the G2 front panel controller. If No

Controller has been chosen in the initial discovery screen (Fig. 2.2), this
menu is not available. Note that the ,,large knob” of these controllers cannot
be assigned a function, it is hard-wired to the VFO function.

While the function of this menu is the same in all three cases (Controller1,
Controller2, G2 frontpanel), the layout is different, because the position of
the menu buttons are meant to indicate which encoder is referred to.

108 CHAPTER 10. THE MAIN MENU: CONTROLLING PIHPSDR

Fig. 10.12: The Encoder menu for the G2 frontpanel controller

The G2 frontpanel (Fig. 10.11) has, in addition to the large VFO knob at
the bottom right, four small knobs, two (one above the other) at the left
edge and two at the right edge. All four knobs are double encoders with a
switch. This means that there is an inner/upper knob (,,top encoder”) and
an outer/lower knob (,,bottom encoder”), which are two separate encoders.
Furthermore, you can push the knob and have and additional push button
function (,,Switch”). If you open the Encoders menu for a G2 frontpanel
controller, the menu opens as shown in Fig. 10.12. You see four groups with
three buttons (Switch, Top, Bottom) each, and it should be clear which group
belongs to which encoder. With the buttons, you can choose which function
to assign, in the same way as described for the Toolbar (chapter 10.1) and
MIDI (chapter 10.3) menus. With the Default button, you can re-assign the
default values (those shown in Fig. 10.12) to the encoder functions, which
match the silk printing on the enclosure (see Fig. 10.11).

The Controller2 (see Fig. 10.13 has (besides the VFO knob at the bottom
right) three knobs (arranged horizontally) at the bottom left, and a fourth
knob at the top right, all of which are double encoders with a switch. So if
you run piHPSDR with a Controller2, then the menu looks different (Fig.
10.14). The menu shows for groups with three buttons each, and it should

10.4. THE ENCODERS MENU 109

Fig. 10.13: A picture of the Controller2 (image by courtesy of Apache Labs).

be clear which group belongs to which button. The Default button again
re-installs the default functions (those shown in Fig. 10.14).

Fig. 10.14: The Encoder menu for Controller2

Finally, the Controller1 (see Fig. 10.15) has (besides the big VFO knob at
the bottom right) three knobs (denoted E1, E2, E3), rranged vertically at the

110 CHAPTER 10. THE MAIN MENU: CONTROLLING PIHPSDR

Fig. 10.15: A picture of the Controller1 (image by courtesy of Apache Labs).

right edge. These knobs are single encoders with a switch (you can turn the
knob, but you can also push it). Therefore, the Encoders menu in this case
(Fig. 10.16) shows three groups with two buttons each. The Default button
again re-installs the default values shown in Fig. 10.16, these are chosen just
for convenience since there are no default function printed on the enclosure.

10.5 The Switches Menu

The encoders menu can be used to assign functions to the push buttons of a
piHPSDR Controller2 or the G2 front panel controller. If No Controller or
Controller1 has been chosen in the initial discovery screen (Fig. 2.2), this
menu is not available. This menu is not available for the Controller1 because
the eight push buttons of this controller are hard-wired to the toolbar buttons
and their functions as thus assigned via the Toolbar menu (see Chapter 10.1).

On the G2 frontpanel (see Fig. 10.11), there are a lot of push buttons: at
the left edge, to the right of the left edge encoders, are two buttons, at the
bottom right, below the VFO knob, there are two more buttons, and at

10.5. THE SWITCHES MENU 111

Fig. 10.16: The Encoder menu for Controller1

the top right, to the right of the left edge encoders, is an array of 12 (4x3)
buttons. The layout of the Switches menu for the G2 frontpanel (Fig. 10.17)
features (besides the Close button) sixteen buttons, and their arrangement is
such that you can easily guess which menu button refers to which button on
your G2 frontpanel. Assigning functions to these buttons is done exactly as
described for the Toolbar menu (chapter 10.1). With Default one re-installs
the default values shown in Fig. 10.17 which match the functions printed on
the enclosure.

The Controller2 (see Fig. 10.13 in the last section) also has 16 push buttons,
but they are arranged differently: at the bottom edge there are 7 buttons
arranged horizontally. At the right edge, there is an array of 8 buttons (4x2)
with one additional button above the right column that is to the right of the
fourth encoder, just below the power button. Looking at the Switches menu
for the Controller2 (Fig. 10.18), you see representations of these 16 buttons
in an arrangement for which it is self evident which menu button refers to
which Controller2 push button. Assigning functions to these buttons is done
exactly as described for the Toolbar menu (chapter 10.1). With Default one
re-installs the default values shown in Fig. 10.18 which match the functions
printed on the enclosure.

112 CHAPTER 10. THE MAIN MENU: CONTROLLING PIHPSDR

Fig. 10.17: The Switches menu for the G2 frontpanel controller.

Fig. 10.18: The Switches menu for Controller2.

Appendix A

List of piHPSDR ,,Actions”

In this chapter, we give a list of ,,actions” implemented in the piHPSDR
program. These actions can be assigned to toolbar buttons on the screen,
or pushbuttons/encoders of a GPIO-connected or MIDI controller. Not all
actions can be assigned to all control elements. Changing the AF volume, for
example, can only be assigned to a knob which you can turn, while switching
RIT on/off can only be assigned to a button that you can push. For each
action in the following table, there is a long and a short string assigned. The
long string will be used when there is enough space, while the short string
is used for small buttons and to store actions in preference files (therefore
the short strings never contain a blank character or a line break). Then, for
each action we give the type of control element allowed for this action as a
combination of the letters B, P, E, which stand for

B ”Button”: A button in the toolbar, or a push-button or switch on a GPIO
or MIDI connected console

P ”Potentiometer”: A potentiometer or a slider on a MIDI connected console

E ”Encoder”: A rotary encoder on a GPIO or MIDI connected console

The main difference between a ”potentiometer” and an ”encoder” is, that
the former has a min and max position, while an encoder can be turned
in either direction without stopping. This means that a potentiometer re-
ports a value between min and max, while an encoder reports an increment,

113

114 APPENDIX A. LIST OF PIHPSDR ,,ACTIONS”

that is, whether it has been turned clock wise or counter clock wise. The
existing GPIO consoles do not have potentiometers (most likely because of
the lack of analog inputs), but many MIDI consoles do have, and Arduino-
based MIDI controllers might have it because there analog inputs to read out
potentiometers are available.

To give an example, controlling the TX drive can be down both with a slider
and with an encoder. While for a slider/potentiometer, the values from min
to max are simple mapped to the TX drive values from 0 to 100, the signals
from an encoder will just increase or decrease the value until one of a limits
has been reached.

In the following, the actions are alphabetically sorted by their long name,
with the ”empty” action listed first.

NONE NONE BPE

This is an action which does nothing. It can be assigned to buttons or enco-
ders that are often accidentally operated. Some MIDI consoles, for example,
report a button press event if the VFO knob is touched, and this we want to
ignore.

A<>B A<>B B

Swap VFOs A and B. This will not only swap the frequencies, but also all
other settings associated with that VFO, such as mode, filter, CTUN, and
RIT settings.

A<B A<B B

Copy VFO B to VFO A.

A>B A>B B

Copy VFO A to VFO B.

AF Gain AFGAIN PE

Change the AF gain (headphone volume) of the active receiver.

115

AF Gain RX1 AFGAIN1 PE

Change the AF gain (headphone volume) of the RX1 receiver.

AF Gain RX2 AFGAIN2 PE

Change the AF gain (headphone volume) of the RX2 receiver.

AGC Menu AGC B

Opens the AGC menu.

ANF ANF B

Toggels the state (on/off) of the automatic notch filter for the active receiver.

Atten ATTEN PE

Changes the value (0-31 dB) of the step attenuator of the active receiver.
This funciton is only available for radios that have such an attenuator.

Band 10 10 B

Change band of the active receiver to the 10m band. If already on that band,
move to the next bandstack entry. This action is a no-op if the frequency of
the band falls outside the frequency range of the radio.

Band 12 12 B

Change band of the active receiver to the 12m band. If already on that band,
move to the next bandstack entry. This action is a no-op if the frequency of
the band falls outside the frequency range of the radio.

Band 1240 1240 B

Change band of the active receiver to the 1240 MHz (23 cm) band. If already
on that band, move to the next bandstack entry. This action is a no-op if
the frequency of the band falls outside the frequency range of the radio.

116 APPENDIX A. LIST OF PIHPSDR ,,ACTIONS”

Band 144 144 B

Change band of the active receiver to the 144 MHz (2m) band. If already on
that band, move to the next bandstack entry. This action is a no-op if the
frequency of the band falls outside the frequency range of the radio.

Band 15 15 B

Change band of the active receiver to the 15m band. If already on that band,
move to the next bandstack entry. This action is a no-op if the frequency of
the band falls outside the frequency range of the radio.

Band 160 160 B

Change band of the active receiver to the 160m band. If already on that band,
move to the next bandstack entry. This action is a no-op if the frequency of
the band falls outside the frequency range of the radio.

Band 17 17 B

Change band of the active receiver to the 15m band. If already on that band,
move to the next bandstack entry. This action is a no-op if the frequency of
the band falls outside the frequency range of the radio.

Band 20 20 B

Change band of the active receiver to the 15m band. If already on that band,
move to the next bandstack entry. This action is a no-op if the frequency of
the band falls outside the frequency range of the radio.

Band 220 220 B

Change band of the active receiver to the 220 MHz (1.25 m) band. If already
on that band, move to the next bandstack entry. This action is a no-op if
the frequency of the band falls outside the frequency range of the radio.

117

Band 2300 2300 B

Change band of the active receiver to the 2300MHz (13 cm) band. If already
on that band, move to the next bandstack entry. This action is a no-op if
the frequency of the band falls outside the frequency range of the radio.

Band 30 30 B

Change band of the active receiver to the 30m band. If already on that band,
move to the next bandstack entry. This action is a no-op if the frequency of
the band falls outside the frequency range of the radio.

Band 3400 3400 B

Change band of the active receiver to the 3400 Mhz (9 cm) band. If already
on that band, move to the next bandstack entry. This action is a no-op if
the frequency of the band falls outside the frequency range of the radio.

Band 40 40 B

Change band of the active receiver to the 40m band. If already on that band,
move to the next bandstack entry. This action is a no-op if the frequency of
the band falls outside the frequency range of the radio.

Band 430 430 B

Change band of the active receiver to the 430 MHz (70 cm) band. If already
on that band, move to the next bandstack entry. This action is a no-op if
the frequency of the band falls outside the frequency range of the radio.

Band 6 6 B

Change band of the active receiver to the 6m band. If already on that band,
move to the next bandstack entry. This action is a no-op if the frequency of
the band falls outside the frequency range of the radio.

118 APPENDIX A. LIST OF PIHPSDR ,,ACTIONS”

Band 60 60 B

Change band of the active receiver to the 60m band. If already on that band,
move to the next bandstack entry. This action is a no-op if the frequency of
the band falls outside the frequency range of the radio.

Band 70 70 B

Change band of the active receiver to the 70 MHz (4m) band. If already on
that band, move to the next bandstack entry. This action is a no-op if the
frequency of the band falls outside the frequency range of the radio.

Band 80 80 B

Change band of the active receiver to the 80m band. If already on that band,
move to the next bandstack entry. This action is a no-op if the frequency of
the band falls outside the frequency range of the radio.

Band 902 902 B

Change band of the active receiver to the 902 MHz (33 cm) band. If already
on that band, move to the next bandstack entry. This action is a no-op if
the frequency of the band falls outside the frequency range of the radio.

Band AIR AIR B

Change band of the active receiver to the 108 MHz band, used for aircraft
communication. If already on that band, move to the next bandstack entry.
This action is a no-op if the frequency of the band falls outside the frequency
range of the radio.

Band GEN GEN B

Change band of the active receiver to the current bandstack entry of the
”general” band. If already on that band, move to the next bandstack entry.
This action is a no-op if the frequency of the band falls outside the frequency
range of the radio.

119

Band - BND- B

Change band of the active receiver to the next lower band in the list of
bands. If already at the lowest band, switch to the highest band (including
transverter bands which have been defined) whose frequency is with the
radio’s frequency range.

Band + BND+ B

Change band of the active receiver to the next higher band in the list of
bands (including transverter bands that have been defined). If already at
the highest band, switch to the lowest band whose frequency is with the
radio’s frequency range.

Band WWV WWV B

Change band of the active receiver to the current bandstack entry of the
WWV band. If already on that band, move to the next bandstack entry.
This action is a no-op if the frequency of the band falls outside the frequency
range of the radio.

BndStack - BSTK- B

Cylcle backward through the bandstack entries of the active receiver.

BndStack + BSTK+ B

Cylcle forward through the bandstack entries of the active receiver.

Band Menu BAND B

Open the BAND menu.

BndStack MENU BSTK B

Open the BANDSTACK menu.

120 APPENDIX A. LIST OF PIHPSDR ,,ACTIONS”

Cmpr On/Off COMP B

Toggle the state (on/off) of the compressor used in the TX audio input.

Cmpr Level COMPVAL PE

Change the value of the compressor (0-20 dB) used in the TX audio input.
The compressor is automaticall switched on (off) if the ”new” value of the
compressor is larger then (equal to) zero.

CTUN CTUN B

Toggle the state (on/off) of the CTUN state of the active receiver. CTUN
stands for ”click to tune”. In CTUN mode, you can move the RX frequency
over the whole spectrum scope, whose center then remains at a fixed fre-
quency.

CW Audio Peak Fltr CW-APF B

Toggle (on/off) the CW audio peak filter for the active receiver. Note that
the width of this filter (default: 75 Hz) can only be modified through the CW

menu.

CW Frequency CWFREQ PE

Change the CW side tone frequency in the range 300-1000 Hz. This also
changes the BFO frequency upon receive.

CW Left CWL B

This action indicates the closure/opening of the left paddle of a CW key. It is
usually assigned to a GPIO line or a MIDI controller to which a Morse paddle
is attached, and works with the iambic keyer that is built into piHPSDR. This
keyer is only active if CW is not handled in the radio (see CW menu).

121

CW Right CWR B

This action indicates the closure/opening of the right paddle of a CW key.
It is usually assigned to a GPIO line or a MIDI controller to which a Morse
paddle is attached, and works with the iambic keyer that is built into piH-
PSDR. This keyer is only active if CW is not handled in the radio (see CW
menu).

CW Speed CWSPD PE

Change the CW side tone frequency in the range 1-60 wpm. This affect the
built-in iambic keyer or the keyer inside the radio, depending on whether
CW is handled in the radio or not (see CW menu).

CW Key (keyer) CWKy B

Straith key key-down or key-up event. Usually assigned to a GPIO line of
MIDI controller to which a straight key or an external keyer is attached.
Note that this action does not automatically switch to TX, so it must be
used together with either manual RX/TX switching, or with the ”PTT (CW

Keyer)” action.

PTT (keyer) CWKyPTT B

This very similar to the PTT action (see below) with the exception that CW
handling in the radio is temporarily disabled (thus, CW handling in piH-
PSDR is enabled). This allows to have, e.g. a paddle attached to the radio
while a contest logging program ,,talks” to piHPSDR.

DIV On/Off DIVT B

Toggles (enabled/disabled) DIVERSITY reception.

DIV Gain DIVG E

Adjust DIVERSITY gain. One tick of the encoder increments of decrements
the gain by an amount of 0.5

122 APPENDIX A. LIST OF PIHPSDR ,,ACTIONS”

DIV Gain Coarse DIVGC E

Adjust DIVERSITY gain (coarse adjustment). One tick of the encoder in-
crements of decrements the gain by an amount of 2.5

DIV Gain Fine DIVGF E

Adjust DIVERSITY gain (fine adjustment). One tick of the encoder in-
crements of decrements the gain by an amount of 0.1. Since adjusting the
DIVERSITY gain (or phase) is sometimes difficult, assigning one encoder to
a coarse and another encoder to a fine adjustment may help in locating the
,,sweet spot”.

DIV Phase DIVP E

Adjust DIVERSITY phase (fine adjustment). One tick of the encoder incre-
ments of decrements the gain by an amount of 0.5

DIV Phase Coarse DIVPC E

Adjust DIVERSITY gain (coarse adjustment). One tick of the encoder in-
crements of decrements the gain by an amount of 2.5

DIV Phase Fine DIVPF E

Adjust DIVERSITY gain (coarse adjustment). One tick of the encoder in-
crements of decrements the gain by an amount of 20.1

DIV Menu DIV B

Open the DIVERSITY menu.

Duplex DUP B

Toggle (on/off) DUPLEX status. IN the DUPLEX mode, the receivers con-
tinue to work during TX, and the RX panels are not removed during TX.
Instead, a separate TX window opens during transmitting. Generally, DU-
PLEX only make sense when using different and well decoupled RX and TX
antennas.

123

Filter - FL- B

Cycle forward (!) through the list of filters for the current mode of the active
receiver. Normally, this means switching to a narrower filter (hence the name
FILTER -). When reaching the last filter in the list, further cycling switches
to the first (widest) filter.

Filter + FL+ B

Cycle backward (!) through the list of filters for the current mode of the
active receiver. Normally, this means switching to a wider filter (hence the
name FILTER +). When reaching the first filter in the list, further cycling
switches to the last filter which is the variable Var2 filter.

Filter Cut Low FCUTL E

Adjust the low-cut of the current filter. Note that the notion of ,,low” edge
of the filter refers to audio frequencies for the single side band modes LSB,
CWL, DIGL. This action is a no-op unless the current filter is one of the two
variable filters Var1 or Var2.

Filter Cut High FCUTL E

Adjust the high-cut of the current filter. Note that the notion of ,,high” edge
of the filter refers to audio frequencies for the single side band modes LSB,
CWL, DIGL. This action is a no-op unless the current filter is one of the two
variable filters Var1 or Var2.

Filter Cut Default FCUTDEF B

Reset the low and high cut of the current filter to the default values. This
action is a no-op unless the current filter is one of the two variable filters
Var1 or Var2.

Filter Menu FILT B

This opens the Filter menu.

124 APPENDIX A. LIST OF PIHPSDR ,,ACTIONS”

VFO Menu FREQ B

This opens the FREQ (VFO) menu.

Function FUNC B

Cycle through the six toolbar sets. For the piHPSDR GPIO Controller1,
where the eight switches follow the toolbar buttons, this also affects the
function of the switches. Note that this action is always connected with the
right-most toolbar button.

FuncRev FUNC- B

Cycle backwards through the six toolbar sets. For the piHPSDR GPIO
Controller1, where the eight switches follow the toolbar buttons, this also
affects the function of the switches. When using a mouse, this action can be
invoked by a secondary mouse click on the rightmost toolbar button.

IF Shift IFSHFT E

This command is effective only if one of the variable filters Var1 or Var2 is
currently used in the active receiver, and shifts the filter, that is, it affects
the low and high cut in the same way.

IF Shift RX1 IFSHFT1 E

This command is effective only if one of the variable filters Var1 or Var2 is
currently used in VFO-A, and shifts the filter, that is, it affects the low and
high cut in the same way.

IF Shift RX2 IFSHFT2 E

This command is effective only if one of the variable filters Var1 or Var2 is
currently used in VFO-B, and shifts the filter, that is, it affects the low and
high cut in the same way.

125

IF Width IFWIDTH E

This command is effective only if one of the variable filters Var1 or Var2 is
currently used in the active receiver, and changes the filter width, that is, it
affects the low and high cut in an opposite way.

IF Width RX1 IFWIDTH1 E

This command is effective only if one of the variable filters Var1 or Var2 is
currently used in VFO-A, and changes the filter width, that is, it affects the
low and high cut in an opposite way.

actionIF Width RX2IFWIDTH2EThis command is effective only if one of
the variable filters Var1 or Var2 is currently used in VFO-B, and changes the
filter width, that is, it affects the low and high cut in an opposite way.

Linein Gain LIGAIN PE

Change the line-in gain of the radio. If the radio does not have a line-in
input, this control has no effect.

Lock LOCK B

Lock the VFOs. A locked VFO will not accept VFO frequency steps in either
direction, and cannot be moved by dragging with the mouse. Band changes
etc. are still possible, though. The command is intended to guard against
accidentally moving the VFO dial.

Main Menu MAIN B

Open the main menu.

Memory Menu MEM B

Open the MEM (Memory) menu (see Chapter 6.5).

126 APPENDIX A. LIST OF PIHPSDR ,,ACTIONS”

Mic Gain MICGAIN PE

Change the mic gain (from -12 to 50 dB). The amplification of the microphone
audio data is done in software, and applies to the TX audio input samples
whereever they come from. (See the discussion of local microphones in the
TX menu.

Mode - MD- B

Cycle backwards through the list of modes for the active receiver. When the
first mode (LSB) has been reached, jump to the last one (DRM). Note that
when changing the mode, the current filter, noise reduction, equalizer, VFO
step size, and TX compressor settings are stored for the old mode, and the
settings last used with the new mode are restored. This allows to quickly
switch between SSB and CW, or between SSB and digi modes, without re-
adjusting these settings.

Mode + MD+ B

Cycle forward through the list of modes for the active receiver. When the
last mode (DRM) has been reached, jump to the first one (LSB). Note that
when changing the mode, the current filter, noise reduction, equalizer, VFO
step size, and TX compressor settings are stored for the old mode, and the
settings last used with the new mode are restored. This allows to quickly
switch between SSB and CW, or between SSB and digi modes, without re-
adjusting these settings.

Mode Menu MODE B

Open the Mode menu.

MOX MOX B

Toggle between TX and RX. Unlike the PTT action, which puts the radio
into TX when pressed and into RX when released, this button toggles the
PTT state when pressed.

127

Multi MULTI E

This is the multi-function encoder. It executes the encoder action it is cur-
rently assigned to.

Multi Select MULTISEL E

With this encoder, one cycles through the list of actions assigned to the
multi-function encoder. The currently active action is displayed in the VFO
bar. For examples, if the AFGAIN action (change audio volume of the current
receiver) is assigned to the multi-function encoder, it will change the AF gain.
This action it used if one used two encoders to activate the multi-function
encoder feature.

Multi Toggle MULTIBTN B

This button toggles the ,,multi-encoder select” state. If this state is active,
one can change the action assigned to the multi-function encoder using that
encoder. This function is used if one uses one encoder and one push-button
to activate the multi-function encoder feature.

Mute MUTE B

Toggles the ,,mute” state of the active receiver. If a receiver is muted, it
produces zero-amplitude audio output.

NB NB B

Cycles through the noise blanker states (NB off/NB1/NB2).

NR NR B

Cycles through the noise reduction states (NR off/NR1/NR2).

Noise Menu NOISE B

Opens the NOISE menu.

128 APPENDIX A. LIST OF PIHPSDR ,,ACTIONS”

NumPad 0 0 B

Used for direct frequency entry. This is the same as hitting the corresponding
button ,,0” in the VFO (VFO) menu.

NumPad 1. . .NumPad 9 1. . .9 B

The same as NumPad 0, except that digits (button) ,,1” through ,,9” are
referred to.

NumPad BS BS B

Used for direct frequency entry (BS = backstep). This is the same as hitting
the corresponding button in the VFO menu. It cancels the last-entered digit.

NumPad CL CL B

Used for direct frequency entry (CL = clear). This is the same as hitting the
corresponding button in the VFO menu. It cancels all entered digits so far.

NumPad Dec DEC B

Used for direct frequency entry (DEC = decimal point). This is the same as
hitting the corresponding button in the VFO menu.

NumPad kHz KHZ B

Used for direct frequency entry. This is the same as hitting the corresponding
button in the VFO menu. The VFO frequency is changed to the value entered
so far, multiplied with 1000. For example, to go to 7.040 MHz, one can enter
the sequence ,,7”, ,,0”, ,,4”, ,,0”, ,,KHZ”.

NumPad MHz MHZ B

Used for direct frequency entry. This is the same as hitting the corresponding
button in the VFO menu. The VFO frequency is changed to the value entered
so far, multiplied with 1,000,000. For example, to go to 7.040 MHz, one can
enter the sequence ,,7”, ,,DEC”, ,,0”, ,,4”, ,,MHZ”.

129

NumPad Enter EN B

Used for direct frequency entry. This is the same as hitting the corresponding
button in the VFO menu. The VFO frequency is changed to the value entered
so far. For example, to go to 7.040 MHz, one can enter the sequence ,,7”,
,,0”, ,,4”, ,,0”, ,,0”, ,,0”, ,,0”. This is rarely used but offers Hz-resolution for
the direct frequency entry.

PanZoom PAN E

Change the Pan value. This control is only effective when the Zoom value is
larger than 1.

Pan- PAN- B

Decrease the PAN value by 100. This control is only effective when the Zoom
value is larger than 1.

Pan+ PAN+ B

Increase the PAN value by 100. This control is only effective when the Zoom
value is larger than 1.

Panadapter High PANH PE

Change the dBm value (from -60 to +20) at the top of the spectrum scope
of the active receiver. Values outside this range can be set in the DISPLAY

menu.

Panadapter Low PANL PE

Change the dBm value (from -160 to -60) at the bottom of the spectrum
scope of the active receiver. Values outside this range can be set in the
DISPLAY menu.

Panadapter Step PANS PE

Change the step size (from 5 to 30) of the panadapter of the active receiver.
This is the spacing of the thin horizontal lines in the spectrum scope.

130 APPENDIX A. LIST OF PIHPSDR ,,ACTIONS”

Preamp On/Off PRE B

Toggle the preamp of the active receiver. Although the preamp switching is
part of the HPSDR protocol, this has no effect in current radio models since
the preamp is hard-wired ,,on”.

PS On/Off PST B

Toggle (on/off) adaptive predistortion (PureSignal).

PS Menu PS B

Open the PS (PureSignal) menu.

PTT PTT B

Put the radio into TX mode when the button is pressed, and go back to
RX when the button is released. This is one of the few actions where a
button release event is significant. When attaching, say, the PTT contact of
a microphone to a GPIO line for this purpose, take care of proper debouncine,
since piHPSDR is not good at debouncing switches where both the press and
release events are significant.

Rcl 0 RCL0 B

Recall (restore) data from the memory slot 0 (see the Memory menu, Chapter
6.5).

Rcl 1. . .Rcl 9 RCL1. . .RCL9 B

The same as Rcl 0, except that memory slots 1 through 9 are referred to.

RF Gain RFGAIN PE

Set the gain of the RF front end of the active receiver. Only effective for
radios that have such a gain control. Most HPSDR radios do not have
RF gain, they have a step attenuator in the RF front end instead. Small
SDR radios using the AD9866 chip (HermesLite, RadioBerry) and radios
connected via the SoapySDR library usually do have an RF gain control.

131

RF Gain RX1 RFGAIN1 PE

Set the gain of the RF front end of RX1. Only effective for radios that
have such a gain control. Most HPSDR radios do not have RF gain, they
have a step attenuator in the RF front end instead. Small SDR radios using
the AD9866 chip (HermesLite, RadioBerry) and radios connected via the
SoapySDR library usually do have an RF gain control.

RF Gain RX2 RFGAIN2 PE

Set the gain of the RF front end of RX2. Only effective for radios that
have such a gain control. Most HPSDR radios do not have RF gain, they
have a step attenuator in the RF front end instead. Small SDR radios using
the AD9866 chip (HermesLite, RadioBerry) and radios connected via the
SoapySDR library usually do have an RF gain control.

RIT RIT E

Change the RIT value of the active receiver in the range -9999 to 9999 Hz.
If a zero value is set, RIT is automatically disabled, if a non-zero value ist
set, RIT is enabled.

RIT Clear RITCL B

Set the RIT value of the active receiver to zero. As a side effect, RIT is
disabled for the active receiver

RIT On/Off RITT B

Toggle RIT (enabled/disabled) for the active receiver. Note the RIT value
is not changed, so you can temporarily disable RIT, and then enable it with
the same offset (RIT value) used before.

132 APPENDIX A. LIST OF PIHPSDR ,,ACTIONS”

RIT - RIT- B

Decrement the RIT value of the active receiver by the RIT step size, in the
range -9999 to 9999 Hz. If a value of zero is reached, RIT is automatically
disabled, and if a nonzero value is reached, RIT is automatically enabled.
Note that this action belongs to the few ones for which a button release
event has an effect. If you press and hold RIT- (either on the toolbar, or on
a GPIO or MIDI console), there is an auto-repeat such that the action will
be repeated every 250 msec until the RIT- button is released.

RIT + RIT+ B

Increment the RIT value of the active receiver by the RIT step size, in the
range -9999 to 9999 Hz. If a value of zero is reached, RIT is automatically
disabled, and if a nonzero value is reached, RIT is automatically enabled.
Note that this action belongs to the few ones for which a button release
event has an effect. If you press and hold RIT+ (either on the toolbar, or on
a GPIO or MIDI console), there is an auto-repeat such that the action will
be repeated every 250 msec until the RIT+ button is released.

RIT RX1 RIT1 E

Change the RIT value of RX1 in the range -9999 to 9999 Hz. If a zero value is
set, RIT is automatically disabled, if a non-zero value ist set, RIT is enabled.

RIT RX2 RIT2 E

Change the RIT value of RX2 in the range -9999 to 9999 Hz. If a zero value is
set, RIT is automatically disabled, if a non-zero value ist set, RIT is enabled.

RIT Step RITST B

Cycle through the possible values (1 Hz, 10 Hz, 100 Hz) of the RIT step.

RSAT RSAT B

If the SAT mode is either Off or SAT, change it to RSAT. If the SAT mode is
RSAT, change it to Off. In RSAT mode all VFO frequency changes applied
to one of the two VFOs will be applied to the other VFO with the sign
reversed.

133

RX1 RX1 B

Make the first receiver the active one, if piHPDSR is running two receivers.

RX2 RX2 B

Make the second receiver the active one, if piHPDSR is running two receivers.

SAT SAT B

If the SAT mode is either Off or RSAT, change it to SAT. If the SAT mode
is SAT, change it to Off. In SAT mode all VFO frequency changes applied
to one of the two VFOs will be applied to the other VFO as well.

SNB SNB B

Toggle (enable/diable) the spectral noise blanker for the active receiver.

Split SPLIT B

Toggle (on/off) the split status of the radio.

Squelch SQUELCH PE

Change the squelch threshold value of the active receiver. Squelch is auto-
matically enabled (disbled) if the resulting value is non-zero (zero).

Squelch RX1 SQUELCH1 PE

Change the squelch threshold value of RX1. Squelch is automatically enabled
(disbled) if the resulting value is non-zero (zero).

Squelch RX2 SQUELCH2 PE

Change the squelch threshold value of RX2. Squelch is automatically enabled
(disbled) if the resulting value is non-zero (zero).

134 APPENDIX A. LIST OF PIHPSDR ,,ACTIONS”

Swap RX SWAPRX B

Make the inactive receiver the active one. This action is only effective if
piHPDSR is running two receivers.

Tune TUNE B

Toggle (on/off) TUNE. If selected in the OC menu, an OC output will become
active (low). This can then be used to start an external automatic tuner.

Tune Drv TUNDRV E

Change the drive level (0-100) used for TUNEing. This is equivalent to
changing the ”Tune drive level” spin button in the TX menu and to check
the ”Tune use drive” box.

Tune Full TUNF B

Set the ”full tune” flag and clear the ”memory tune” flag. If an OC output
is assigned to the TUNE state, it will be cleared (go high again) 2800 msec
after starting TUNE (this time can also be adjusted in the OC menu).

Tune Mem TUNM B

Set the ”memory tune” flag and clear the ”full tune” flag. If an OC output
is assigned to the TUNE state, it will be cleared (go high again) 550 msec
after starting TUNE (this time can also be adjusted in the OC menu).

TX Drive TXDRV PE

Set the TX drive level (0-100).

Two-Tone 2TONE B

Toggle (on/off) the two-tone state of the transmitter. If the two-tone state
is engaged, the radio will go TX and emit a two-tone signal.

135

VFO VFO E

This is the VFO frequency control of the active receiver.

VFO A VFOA E

This is the VFO frequency control of VFO-A.

VFO B VFOB E

This is the VFO frequency control of VFO-B.

VOX On/Off VOX B

Toggle (on/off) vox status. If vox is enabled, you can automatically key the
transmitter by talking into the microphone, without the need to press a PTT
button. See the VOX menu.

VOX Level VOXLEV E

Change the VOX level threshold. If you operate vox, and the radio does
not go TX while talking into the microphone, decrease the VOX threshold.
If the radio goes TX simply because the neighbour’s hound starts barking,
increase the VOX threshold.

Wfall High WFALLH E

Change the ”high” level (-100 dBm ... 0 dBm) of the waterfalls. Signal levels
between low and high are colour coded from black to yellow, while signals
above ”high” are yellow and signals below ”low” are black. This value has no
effect if the automatic waterfall coloring is chosen (”waterfall automatic”),
which is usually preferable.

Wfall Low WFALLL E

Change the ”low” level (-150 dBm ... -50 dBm) of the waterfalls. Signal levels
between low and high are colour coded from black to yellow, while signals
above ”high” are yellow and signals below ”low” are black. This value has no
effect if the automatic waterfall coloring is chosen (”waterfall automatic”),
which is usually preferable.

136 APPENDIX A. LIST OF PIHPSDR ,,ACTIONS”

XIT XIT E

Change the XIT value of the transceiver in the range -9999 to 9999 Hz. If
a zero value is set, XIT is automatically disabled, if a non-zero value ist set,
XIT is enabled.

XIT Clear XITCL B

Set the XIT value of the transmitter to zero. As a side effect, XIT is disabled.

XIT On/Off XITT B

Toggle XIT (enabled/disabled) for the transceiver. Note the XIT value is
not changed, so you can temporarily disable XIT, and then enable it with
the same offset (XIT value) used before.

XIT - XIT- B

Decrement the XIT value of the transmitter by the RIT (!) step size, in the
range -9999 to 9999 Hz. If a value of zero is reached, XIT is automatically
disabled, and if a nonzero value is reached, XIT is automatically enabled.
Note that this action belongs to the few ones for which a button release
event has an effect. If you press and hold XIT- (either on the toolbar, or on
a GPIO or MIDI console), there is an auto-repeat such that the action will
be repeated every 250 msec until the XIT- button is released.

XIT + XIT+ B

Increment the XIT value of the transmitter by the RIT (!) step size, in the
range -9999 to 9999 Hz. If a value of zero is reached, XIT is automatically
disabled, and if a nonzero value is reached, XIT is automatically enabled.
Note that this action belongs to the few ones for which a button release
event has an effect. If you press and hold XIT+ (either on the toolbar, or on
a GPIO or MIDI console), there is an auto-repeat such that the action will
be repeated every 250 msec until the XIT+ button is released.

Zoom ZOOM PE

Change the ZOOM value (1...8) of the active receiver.

137

Zoom - ZOOM- B

Decrease the ZOOM value of the active receiver by one. If the ZOOM value
was already 1, this is a no-op.

Zoom - ZOOM- B

Increase the ZOOM value of the active receiver by one. If the ZOOM value
was already 8, this is a no-op.

138 APPENDIX A. LIST OF PIHPSDR ,,ACTIONS”

Appendix B

The MULTI encoder

When using a GPIO or MIDI controller, one (and only one) of the encoders
can be chosen as the multi-function encoder by assigning the Multi action.
This means that an action (say, changing the AF volume, the TX drive or
the step attenuator of the RF front-end) can be dynamically assigned to that
encoder, making it very facile to use a single ,,knob” for various purposes.
One has to sacrifice either another encoder or a push-button to have an easy-
to-use handle to change the action currently assigned with the multi-function
encoder. Two such setups are possible:

In the first setup, one uses two encoders to implement the multi-function
feature. Besides the multi-function encoder, one uses another encoder called
the multi-selection encoder and assigns the Multi Select action to this en-
coder. With the latter one, one can (alphabetically) cycle through the list
of actions assigned to the multi-function encoder. Currently, one can choose
between 28 such actions, they are listed here by the long name (see Appendix
A):

AF Gain AGC Gain Atten Cmpr Level

CW Frequency CW Speed DIV Gain DIV Phase

Filter Cut Low Filter Cut High IF Shift IF Width

Linein Gain Mic Gain PanZoom Panadapter High

Panadapter Low Panadapter Step RF Gain RIT

Squelch Tune Drv TX Drive VOX Level

WFall High WFall Low XIT Zoom

139

140 APPENDIX B. THE MULTI ENCODER

For those controllers with double encoders on a single shaft, one can prefer-
ably assign the encoder operated with the outer ring to Multi Select and
the encoder operated with the inner knob to Multi. Of course, one can
equally well use two different encoders for this purpose.

In the second setup, one only uses one encoder and a push button to imple-
ment the multi-function feature. The Multi Toggle action is assigned to the
push button which is used to toggle between the ,,select” and ,,action” states.
The normal state is the ,,action” state, where turning the encoder exectutes
the function it is assigned to. When in ,,select” state, one can assign a new
action to the multi-function encoder exactly as in the first setup, except that
one now turns the multi-function encoder itself. Toggling between the two
states with the Multi Toggle button thus eliminates the need for a second
encoder to implement the multi-function feature.

The current Multi action is shown in the VFO bar at the bottom right, that
is, below the VFO B frequency, using a short and (hopefully) descriptive text,
since space there is scarce for the smaller VFO bars. The text is printed in
yellow in the normal (,,action”) state and turns red in the ,,select” state.
This text is not shown until the first multi function action (MULTI, Multi
Select, or Multi Toggle) is executed such that it is not shown as long as
no multi function encoder is defined or used. The Multi action is not stored
in the preferences file, the default action at program startup always is the
first in the list, namely AG gain.

Appendix C

piHPSDR keyboard bindings

There are a lot of keyboard bindings effective if you run piHPSDR. Most
of them are standard key bindings of the GTK user interface. For example,
when using a normal slider, you can use the up-arrow and down-arrow keys
to fine adjust the value. In this section we will only list the keyboard binding
that are captured and processed by piHPSDR

space bar Hitting the space bar will execute the MOX command, that is, a
transition from RX to TX or from TX to RX. Use this as the last resort for
TRX switching if your microphone does not have PTT.

u Hitting a lower-caps letter ,,u” moves the VFO frequency up by the current
VFO step size.

d Hitting a lower-caps letter ,,d” moves the VFO frequency up by the current
VFO step size.

U Hitting a upper-caps letter ,,U” moves the VFO frequency of the ,,other”
VFO, that is, the VFO that is not controlling the active receiver, up by 10
times the VFO step size.

D Hitting a upper-caps letter ,,D” moves the VFO frequency of the ,,other”
VFO, that is, the VFO that is not controlling the active receiver, down by
10 times the VFO step size.

This (U/D) is for stations chasing DX and using split mode. One can tune
to the DX station, then copy the VFO of the active receiver to the other one
using A>B or A<B, then then one can move the TX frequency (in split mode)

141

142 APPENDIX C. PIHPSDR KEYBOARD BINDINGS

using these keys in large steps.

Keypad 0 . . . Keypad 9 Hitting a digit on the numerical keypad executes
one of the NumPad 0 to NumPad 9 commands. This can be used for direct
frequency entry via the keyboard.

Keypad Decimal Hitting the decimal point on the keypad executes the NumPad
Dec command which will enter a decimal point during direct frequency entry.

Keypad Subtract Hitting the ,,subtract” (minus) key on the numerical key-
pad executes the NumPad BS (back space) command.

Keypad Divide Hitting the ,,divide” key on the numerical keypad executes
the NumPad CL command which will clear any frequency entered so far.

Keypad Multiply Hitting the ,,multiply” key on the numerical keypad exe-
cutes the NumPad Hz command which will transfer the frequency entered (in
Hz) to the VFO of the active receiver.

Keypad Add Hitting the ,,add” (plus) key on the numerical keypad executes
the NumPad kHz command which will transfer the frequency entered (in kHz)
to the VFO of the active receiver.

Keypad Enter Hitting the ,,enter” key on the numerical keypad executes the
NumPad MHz command which will enter the frequency entered (in MHz) to
the VFO of the active receiver.

Appendix D

piHPSDR CAT commands

The CAT model of piHPSDR largely follows that for other SDR programs. It
is based upon the Kenwood TS-2000 CAT command set, which can easily be
found on the internet (see the Appendix of the Kenwood TS-2000 instruction
manual) and will not be reproduced here for copyright reasons. So if you
want to connect a logbook or contest logging program to piHPSDR, you will
normally tell this program that it has to control a Kenwood TS-2000.

— piHPSDR vs. Kenwood TRX model —

Note that the tranceiver model behind the CAT commands is ,,inher-
ited” from the Kenwood protocol and differs from piHPSDR’s model
in one important aspect: in piHPSDR, a control command such as
changing the mode, the filter, or the frequency always affects the active
receiver unless the VFO is explicitly speficied. For CAT commands on
the other hand, such a command without explicit VFO speficication
will always affect VFO-A.
No rule without an exception: the special CAT commands that support
the ANDROMEDA console (see below) are such that they operate on
the active receiver (ZZZD, ZZZE, ZZZP, ZZZU commands).

In the SDR community, there exist a heavily extended TS-2000 CAT com-
mand set known as the ,,PowerSDR CAT command set”, the original source
is probably

143

144 APPENDIX D. PIHPSDR CAT COMMANDS

https://www.flexradio.com/documentation/

powersdr-cat-command-reference-guide/

Many (but probably not all) of the commands listed there are implemented in
piHPSDR, because it seems that there exist SDR controllers which commu-
nicate over the serial line. In recent years, such an open-source controller, the
ANDROMEDA controller, has been developed by Laurence Barker G8NJJ,
see

https://github.com/laurencebarker/Andromeda front panel

This controller uses some additional CAT commands to communicate with
the radio, and these commands have also been implemented into the RIGCTL
module of piHPSDR by Rick Koch N1GP (thanks Rick). These are the
ZZZD and ZZZU commands for moving the VFO frequency down/up, and
the ZZZP and ZZZE commands for sending information about push-buttons
and encoders, and a ZZZS command which contains information on the
ANDROMEDA version. Furthermore, if ”Andromeda” is selected in the
RIGCTL menu, piHPSDR will constantly send status information to the
ANDROMEDA controller using a ZZZI command. Status information is sent
if something changes (active receiver, diversity status, PTT status, TUNE
mode, PS status, CTUN mode, RIT and XIT status, and LOCK status), such
that the ANDROMEDA controller can update the corresponding LEDs.

Appendix E

How to connect a Morse key or
paddle

Most SDR radios have the possibility to connect a Paddle or at least a straight
key to the radio itself, and then the firmware inside the radio takes care of
all the CW processing. If, in addition, the radio has the option to con-
nect a headphone, you will get a low-latency side tone, generated by the
radio firmware, in this headphon. This is the easiest case (do not forget to
check CW handled in Radio within the CW menu). If the radio (such as the
HermesLite-II) can only connect a straight key, use an external keyer and
connect the output of the keyer to the straight key input of the radio. Note,
however, that the HermesLite-II does not have an audio codec and thus does
not produce a side tone. You can use the keyer output to key a hardware
side tone generator and mix its output with the audio that you feed to your
headphone. This gives a hardware generated low latency side tone.

More complications arise if you have to connect the Morse key to the host
computer running piHPSDR. This is necessary, for example, if there is a
considerable distance between the radio and the host computer running piH-
PSDR. Imagine, for example, that the radio is in the attic close to the antenna
feed point, but that you are sitting in your living room in front of the host
computer running piHPSDR, and that there is a long ethernet cable between
your computer and your radio.

RaspPi GPIO. If your host computer is a RaspPi, and if you are running
either no controller or Controller1, then there are spare GPIO input lines

145

146 APPENDIX E. CONNECT A MORSE KEY

which you can use for connecting a Morse key. The pre-defined GPIO lines
are, if there is ”No Controller”:

� GPIO line 7 for CW Left

� GPIO line 21 for CW Right

� GPIO line 14 for PTT (keyer)

� GPIO line 10 for CW Key (keyer)

In the case of Controller1 the GPIO lines are

� GPIO line 9 for CW Left

� GPIO line 11 for CW Right

� GPIO line 14 for PTT (keyer)

� GPIO line 10 for CW Key (keyer)

All lines are active-low lines with a pull-up, so the active state is reached by
connecting the input line to ground. See Appendix A for an explanation of
the commands. Briefly, use CW Left and CW Right when using piHPSDR’s
internal iambic keyer, and use PTT (keyer) and CW Key (keyer) when using
an external keyer. Note when using an external keyer, it must generate both
a key-down and a PTT signal, and it must be configured such that the PTT
signal arrives about 150 msec earlier than the first key-down. K1EL WinKey
keyers and Arduino clones thereof, which are the most abundant sort of
keyers used, can easily be configured to do so. Depending on the audio
subsystem, the latency of the side tone, when using the internal keyer, may
be a problem. The ALSA audio module for Linux takes special provisions to
keep this latency small.

MIDI If there are no spare GPIO lines (this is the case for the RaspPi if
using the Controller2 or the G2 frontpanel), or if there are no GPIO lines at
all (this is the case for piHPSDR running on Desktop Linux or Macintosh
computers), the best choice to get ”the key into the computer” is to use
MIDI. There are low-cost microcontrollers which can be programmed such

147

that they act as MIDI input devices if connected (via USB) to the host
computer (Arduino Leonardo, Teensy LC). You can run a Winkey Clone on
the microcontroller and add code that for key-up/down and PTT on/off sends
MIDI NoteOn/Off messages to the computer. The use the MIDI menu to
configure. More powerful microcontrollers (e.g. the Teensy4) can even show
up at the computer as a MIDI input device and a serial port, in this case you
can even connect from a contest logging program to the keyer via the WinKey
protocol over the serial port, and get the key-up/down messages via MIDI
back to piHPSDR. The Teensy4 is even so powerful that it can act, in addition
to a MIDI device and a serial port, as a USB audio sound card. Using all these
three components together you can route the RX audio to the Teensy, which
then takes care of mixing the CW side tone with this audio before sending
it to the headphone attached. This is perhaps the most sophisticated way to
connect a key, see https://github.com/softerhardware/CWKeyer. Using
the MIDI menu to assign the CW Key (Keyer) and PTT (keyer) actions is a
little bit tricky, since the menu only allows to assign an action to the latest
event received. Proceed as follows:

� Press and hold one of the two paddles. The keyer will start send-
ing a NoteOn message for PTT, and then infinitely send NoteOn/Off
messages for key up/down. Use the MIDI menu to assign the CW Key

(keyer) action to this MIDI event.

� Then, release the paddle. Some time (the hang time of the keyer) after
the last key-up, a NoteOff message for PTT will be sent. After this,
you can assign the PTT (keyer) action to this MIDI event. You should
see that it has a different Note value than you saw while the keyer was
sending the infinite string of dots or dashes.

As an example, we show a short sketch which has been tested with the
Arduino Leonardo You must install the MIDIUSB library from within the
Arduino IDE, through the Tools → Manage Libraries ... menu. The
sketch monitors four input lines (0, 1, 2, 3 in the example) with debouncing.
You can connect a CW paddle to lines 0 and 1, or the Key and PTT outputs
of a Keyer to lines 2 and 3.

148 APPENDIX E. CONNECT A MORSE KEY

/*

* define four I/O lines for the four inputs

*/

#define CWLEFT_IO 0 // Dot paddle

#define CWRIGHT_IO 1 // Dash paddle or StraightKey

#define CWKEY_IO 2 // from Keyer: CW

#define PTT_IO 3 // from Keyer: PTT

/*

* define MIDI channel four MIDI notes for these four events

*/

#define MIDI_CHANNEL 10

#define CWLEFT_NOTE 10

#define CWRIGHT_NOTE 11

#define CWKEY_NOTE 12

#define PTT_NOTE 13

/*

* define a debouncing time for CWLEFT/CWRIGHT

* and a (possibly shorter) one for CWKEY/PTT

*/

#define DEBOUNCE_PADDLE 15

#define DEBOUNCE_KEYER 5

#include "MIDIUSB.h"

/*

* Debouncing timers

*/

static uint8_t CWLEFT_time;

static uint8_t CWRIGHT_time;

static uint8_t CWKEY_time;

static uint8_t PTT_time;

149

/*

* last reported states

*/

static uint8_t CWLEFT_last;

static uint8_t CWRIGHT_last;

static uint8_t CWKEY_last;

static uint8_t PTT_last;

void setup() {

pinMode(CWLEFT_IO, INPUT_PULLUP);

pinMode(CWRIGHT_IO, INPUT_PULLUP);

pinMode(CWKEY_IO, INPUT_PULLUP);

pinMode(PTT_IO, INPUT_PULLUP);

CWLEFT_time =255;

CWRIGHT_time=255;

CWKEY_time =255;

PTT_time =255;

CWLEFT_last =0;

CWRIGHT_last=0;

CWKEY_last =0;

PTT_last =0;

}

150 APPENDIX E. CONNECT A MORSE KEY

/*

* Send MIDI NoteOn/Off message

*/

void SendOnOff(int note, int state) {

midiEventPacket_t event;

if (state) {

// Note On

event.header = 0x09;

event.byte1 = 0x90 | MIDI_CHANNEL;

event.byte2 = note;

event.byte3 = 127;

} else {

// NoteOff, but we use NoteOn with velocity=0

event.header = 0x09;

event.byte1 = 0x90 | MIDI_CHANNEL;

event.byte2 = note;

event.byte3 = 0;

}

MidiUSB.sendMIDI(event);

// this is CW, so flush each single event

MidiUSB.flush();

}

151

/*

* Process an input line.

* Note that HIGH input means "inactive"

* and LOW input means "active"

* This function does noting during the debounce

* settlement time.

* After the settlement time, if the input state

* has changed, the settlement time is reset and

* a MIDI message (with the new state) sent.

*/

void process(uint8_t *time, uint8_t *oldstate,

uint8_t ioline, uint8_t note,

uint8_t debounce) {

if (*time < 255) (*time)++;

if (*time > debounce) {

uint8_t newstate = !digitalRead(ioline);

if (newstate != *oldstate) {

*time=0;

*oldstate = newstate;

SendOnOff(note, newstate);

}

}

}

152 APPENDIX E. CONNECT A MORSE KEY

void loop() {

uint8_t state;

/*

* For each line, do nothing during the debounce settlement

* time. After that, look at the input line, if it changed,

* reset debounce timer and report value

*/

process (&CWLEFT_time,

&CWLEFT_last,

CWLEFT_IO,

CWLEFT_NOTE,

DEBOUNCE_PADDLE);

process (&CWRIGHT_time,

&CWRIGHT_last,

CWRIGHT_IO,

CWRIGHT_NOTE,

DEBOUNCE_PADDLE);

process (&CWKEY_time,

&CWKEY_last,

CWKEY_IO,

CWKEY_NOTE,

DEBOUNCE_KEYER);

process (&PTT_time,

&PTT_last,

PTT_IO,

PTT_NOTE,

DEBOUNCE_KEYER);

/*

* Execute loop() approximately (!) once per milli-second

*/

delayMicroseconds(950);

}

153

Copy-and-Paste from an PDF file often does not give you what you think, so
this sketch is available under the name MIDI.ino in the release directory
in the piHPSDR repository. Note you can also use this sketch to connect
a microphone PTT button to input line 3. Once the Leonardo has been
programmed, it will show up as an ,,Arduino Leonardo” in the MIDI menu.
As a basic test, open the MIDI menu, check the box for the Leonardo device,
and shortly ground input pin 0. Then the menu should report that a ,,NOTE”
event on channel 10 with a note 10 occured, which you can then (by clicking
the Action button) assign to, say, CW Left.

Note. It should be obvious how to extend this sketch to monitor additional
input lines where you can then connect push buttons to which you can assign
piHPSDR functions via the MIDI menu. Monitoring rotary encoders is more
difficult and not shown here.

154 APPENDIX E. CONNECT A MORSE KEY

Appendix F

Running piHPSDR alongside
with DigiMode programs

In this section, we will cover four different scenarios, namely

� piHPDSR and digimode program running on different computers.

� piHPSDR and digimode program running on the same LINUX com-
puter (including RaspPi) using ALSA.

� piHPSDR and digimode program running on the same LINUX com-
puter (including RaspPi) using PulseAudio.

� piHPSDR and digimode program running on the same MacOS com-
puter.

Running piHPSDR and Digi on different computers.
This typically is the situation if piHPSDR is running on a computer with a
very small screen, such as it is the case if you are using a piHPSDR controller
or the G2 frontpanel. This situation also occurs if you want to run the Digi-
Mode program on a Windows computer, since (as far as I know) piHPSDR
has not yet been adapted to run with the Windows operating system.

There is not much to say here, because this setup is largely the same as
for conventional (analog) rigs: you need a sound interface connected to the
computer running the digi program, and then you connect the sound interface

155

156 APPENDIX F. PIHPSDR AND DIGIMODE PROGRAMS

either to the headphone and mic jacks of the radio, or to the input/output
of a sound card connected to the computer running piHPSDR. In the latter
case, you have to select this soundcard for local audio output in the RX menu,
and for local microphone input in the TX menu.

Unless you are using VOX, you also need a CAT command connection be-
tween the digimode program and piHPSDR. Via CAT commands, the digi-
mode program can induce RX/TX transitions in piHPSDR, change frequen-
cies or modes, etc. If both computers are connected via ethernet, TCP is the
method of choice for such a connection. piHPSDR listens on port 19090 (by
default, can be changed in the RigCtl menu). For standard digimode oper-
ation, choose the Kenwood TS-2000 radio model. If your digimode program
can use the hamlib CAT connection library (for example, both Fldigi and
WSJTX can), choose the ,,OpenHPSDR PiHPSDR” radio model.

If there is no ethernet connection between the compupter running piHPSDR
and the computer running the digimode program, you need two USB-to-serial
interfaces and must connect them via a null modem. Then use the serial port
both in piHPSDR (RigCtl menu) and the digimode program.

Running piHPSDR and Digi on the same computer.
In this case it is strongly recommended that the audio never goes analog, but
is exchanged (transferred to and from) as digital data between piHPSDR
and the digimode program. To this end, you need virtual audio devices
known as virtual audio cables or loopbacks. A virtual audio cable is a pair of
connected (virtual) audio devices, one input (,,microphone”) device and one
output (,,headphone”) device. You can, for example, open the output device
of such a virtual cable in program X at a place where you could also open a
device driving a headphone. In another program Y, you can open the input
device of the same virtual audio cable at a place where you could also open
a device attached to a microphone. The ,,trick” is now that all audio data
which program X sends to the output device can be retrieved by program Y
by reading the input device.

For digimode operation, you need two such virtual audio cables, which we
will name here RXcable and TXcable, just to give an example. The idea
behind the names is, that audio data flows through the RXcable upon RX
and through the TXcable while transmitting. Having said this, it is clear
that

157

� In the piHPSDR RX menu, chose the output device of RXcable for local
audio output.

� In the piHPSDR TX menu, chose the input device of TXcable for local
microphone input.

� In the audio menu of the digimode program, choose the input device
of RXcable for audio input.

� In the audio menu of the digimode program, choose the output device
of TXcable for output output.

With this, the only question remaining is, how to create virtual audio cables,
and how to access them. This is not only different between Linux and MacOS,
but also is different on Linux depending on whether the ALSA compile time
option (see Appendix G) was activated during compilation of piHPSDR. For
the binary installation on a RaspPi (see Appendix J) ALSA is active. If
compiling from the sources you get the PulseAudio module if you do not
change the Makefile (see Appendix G).

Virtual audio cables. ALSA case (Linux only).
The command for creating the two virtual cables (put everything in one line)
is

sudo modprobe snd-aloop index=5,6 id=RXcable,TXcable

enable=1,1 pcm substreams=2,2

The two indices chosen (5, 6) should leave enough head-room for sound de-
vices already present. On a ,,naked” Pi4, indices 0 and 1 refer to the HDMI
and headphone audio output devices, but more indices may already be as-
signed if you have plugged in additional sound cards. You can verify the
existence of the virtual audio cables using the command

aplay -l

and part of the output, as obtained on my Pi4, is printed here:

card 5: RXcable [Loopback], device 0: Loopback PCM [Loopback PCM]

Subdevices: 2/2

Subdevice #0: subdevice #0

Subdevice #1: subdevice #1

158 APPENDIX F. PIHPSDR AND DIGIMODE PROGRAMS

card 5: RXcable [Loopback], device 1: Loopback PCM [Loopback PCM]

Subdevices: 2/2

Subdevice #0: subdevice #0

Subdevice #1: subdevice #1

card 6: TXcable [Loopback], device 0: Loopback PCM [Loopback PCM]

Subdevices: 2/2

Subdevice #0: subdevice #0

Subdevice #1: subdevice #1

card 6: TXcable [Loopback], device 1: Loopback PCM [Loopback PCM]

Subdevices: 2/2

Subdevice #0: subdevice #0

Subdevice #1: subdevice #1

Remember that the device with index 5 is our RXcable and index 6 belongs
to TXcable since not all programs (including piHPSDR) report the names
(RXcable, TXcable) assigned. It is important to realize that each ,,cable”
offers two devices: the first one (0) is the input device and the second one (1)
is the output device. Note that the two devices created by ,,modprobe” only
exist until the next shut-down of the computer and you have to re-create them
each time after booting. There are ways to make this permanent (search the
internet) or to include the ,,modprobe” in a startup script that is exected
once after each boot (again, search the internet). Now we show how to set
this up and show piHPSDR’s RX and TX menu, as well as the audio menu of
WSJTX.

We begin with the piHPSDR settings in the RX (Fig. F.1) and TX (Fig. F.2)
menu:

Fig. F.1: RX menu settings for using loopback with ALSA.

159

Fig. F.2: TX menu settings for using loopback with ALSA.

Is clearly seen that the output device of RXcable (5,1) is used for local RX
audio, and the input device of TXcable (6,0) is used for local microphone
input. The corresponding WSJTX settings audio tab looks similar (Fig.
F.3, only the upper part of the window is shown):

Fig. F.3: WSJTX audio settings for using loopback with ALSA.

Here, the input device of RXcable is used for audio input, and the output
device of TXcable for audio output. Note this program reports the clear
names of the devices rather than its ID numbers. Finally, we show the
WSJTX ,,Radio” tab for establishing the CAT connection, although this is
not specific to ALSA (Fig. F.4):

Important here is to choose the correct rig model OpenHPSDR PiHPSDR and
port :19090 (note the colon!). The other parameters in the left side of the
tab have no meaning for a TCP connection. In the right tab, choose CAT as
the PTT method (TRX transition controlled by CAT commands). Checking
Data/Pkt takes care WSJTX switches piHPSDR to DIGU mode, and using

160 APPENDIX F. PIHPSDR AND DIGIMODE PROGRAMS

Fig. F.4: WSJTX radio settings for CAT connection to piHPSDR.

Fake It for the Split Operation method is just my personal preference.

161

Virtual audio cables, PulseAudio case (Linux).
There are no explicit loopback devices with PulseAudio since they are not
needed. For every PulseAudio output device, there is a corresponding ,,Mon-
itor” device which can be used for sound input, and where the data sent to
the primary (output) device can be red. This means, you can send the RX
audio to the headphone device as you would do for normal SSB operation,
and can then use the Monitor of the headphone device as audio input in
WSJTX. We describe a different setup where we create two dummy (”null-
sink”) output devices. It should be clear how to change this procedure if you
want to listen (with the headphone) to the digimode RX signal while it is
processed in the digimode program. We call the two dummy output devices
RXcable and TXcable just to demonstrate how it works. This is done by the
commands (do not enter the line breaks)

pacmd load-module module-null-sink sink name=RXcable rate=48000

sink properties="device.description=RXcable"

pacmd load-module module-null-sink sink name=TXcable rate=48000

sink properties="device.description=TXcable"

To control whether the output devices have been created correctly, we use
the command pacmd list-sinks, which produces a very long output from
which only the relevant parts are reported here:

...

index: 2

name: <RXcable>

driver: <module-null-sink.c>

flags: DECIBEL_VOLUME LATENCY DYNAMIC_LATENCY

state: IDLE

...

index: 3

name: <TXcable>

driver: <module-null-sink.c>

flags: DECIBEL_VOLUME LATENCY DYNAMIC_LATENCY

state: IDLE

...

Note the index numbers which are 2 for RXcable and 3 for TXcable, these

162 APPENDIX F. PIHPSDR AND DIGIMODE PROGRAMS

index numbers my be different on your machine. The index number of TX-
cable (here: 3) is needed in the case of Fldigi and qSSTV (see note at the
end of this section). The state may also be different from IDLE depending
on whether you (already) make use of that device.

Likewise, check the availability of the input devices using the command pacmd

list-sources, from the output we quote

...

index: 2

name: <RXcable.monitor>

driver: <module-null-sink.c>

flags: DECIBEL_VOLUME LATENCY DYNAMIC_LATENCY

state: IDLE

...

index: 3

name: <TXcable.monitor>

driver: <module-null-sink.c>

flags: DECIBEL_VOLUME LATENCY DYNAMIC_LATENCY

state: IDLE

...

Again, note the index numbers, here they are 2 for the Monitor of RXcable
and 3 for the Monitor of TXcable. The index nummber of RXcable.monitor
(here: 2) is needed in the case of Fldigi and qSSTV (see note at the end
of this section). The state may also be different from IDLE depending on
whether you (already) make use of that device.

Note that these devices are created once, the commands have to be repeated
after rebooting the machine or restarting PulseAudio, the devices can be
made permanent but you have to search the internet on how to do this.
My recommendation is to include such command in a shell script that is
automatically executed when you start the computer.

The necessary configuration for piHPSDR and WSJTX is not almost evident.
The piHPSDR settings are shown in Fig. F.5 (RX menu) and in Fig. F.6 (TX
menu): RXcable has been selected for local RX audio output, while the
Monitor of TXcable is chosen as the local microphone.

In the WSJTX audio tab, the input/output assigments are just reversed, as

163

Fig. F.5: RX menu settings with PulseAudio

Fig. F.6: TX menu settings with PulseAudio

shown in Fig. F.7. The CAT connection between WSJTX and piHPSDR is
the same as in the ALSA case.

164 APPENDIX F. PIHPSDR AND DIGIMODE PROGRAMS

Fig. F.7: WSJTX audio settings with PulseAudio

——– Note on Fldigi and qSSTV ——–

Some popular programs, including Fldigi and qSSTV, can use PulseAu-
dio but have not user interface to choose the PulseAudio device. This
means, they will only use the default PulseAudio input and output de-
vice. So to use Fldigi and/or qSSTV, you have to make TXcable the
default output device and the monitor of RXcable the default input de-
vice. This means Fldigi/qSSTV will always read their audio input from
the monitor of RXcable and put the audio they produce to TXcable.
To achieve this, simply use the two commands

pacmd set-default-sink <index of TXcable>

pacmd set-default-source <index of RXcable.monitor>

where the indices (small integer numbers) are those mentioned above,
and are take from the output of the pacmd list-sinks and the pacmd

list-sources commands.

165

Using ,,loopback” in MacOS
The standard audio option for MacOS is PORTAUDIO which has no built-
in virtual audio cables. In this case the easist, most flexible, and (from my
side) most recommended option is to buy a third-party product, ,,loopback”
from RogueAmoeba (https://rogueamoeba.com/loopback/). Note I have
no connections with that company, I am just using this product and can
recommend it. It can not only be used to create loopback devices, but
you get a patch panel so you can, for example, send the RX audio both
to a headphone device and to a virtual cable, thus eliminating the need to
change piHPSDR menu settings when switching between SSB and digi. The
following picture just shows my setup (Figs. F.8 and F.9).

Fig. F.8: Setting up ,,loopback” on MacOS, RXcable

As one can see, two devices have been created, with name RXcable and
TXcable. While the configuration of the TXcable is the minimum (default)
one, all the output sent to RXcable is further routed to the Build-in Output
(headphone connector) of the Macintosh. One could also modify the TXcable
to accept a microphone as a second input, but then the microphone must be
mutable (On/Off switch) such that it does not pickup noise while doing
digimode. In piHPSDR, simply choose RXcable and local RX output in the
RX menu, and a local microphone with device TXcable in the TX menu. In
WSJTX, simply choose RXcable as the input and TXcable as the output
device.

As an additional bonus, loopback can also mix output devices. For example,

166 APPENDIX F. PIHPSDR AND DIGIMODE PROGRAMS

Fig. F.9: Setting up ,,loopback” on MacOS, TXcable

one can create an additional loopback device with, say, name RX2, which
can also be connected to the headphone output as shown for RXcable. If
piHPSDR is running two receivers, one can use the RX menu to send the
audio output of the first receiver to RXcable and the audio output of the
second receiver to RX2. Additionally one can activate only the left channel
for the first and only the right channel for the second receiver (see the RX

menu). With this setup, one gets the audio output of the first receiver on the
left ear and the audio output of the second receiver on the right ear. This
can be very convenient for hunting DX in split mode, because one then hears
the hounds and the fox on different ears.

Transceiver control (CAT connection) in MacOS is the same as described for
Linux.

Appendix G

Compile-time options

There is a number of compile-time options that are shown on the initial
screen. If you are using a binary version, you have what you have. If you
compile from the sources, you can choose which options you want (or want
not). It is possible to change the options without actually changing one of
the files in the piHPSDR repository. Simply go (in a terminal window) to
the directory where you compile piHPSDR and type in

cp Makefile GNUmakefile

Then you can change the file GNUmakefile and recompile the program (see
end of this section!). This ,,trick” takes care the further compilations use
the file GNUmakefile rather than Makefile, and changing the compile time
options is accomplished by changing the file GNUmakefile with a text editor.
This procedure takes care that the file Makefile is left unchanged, which is
important because as soon as you modify one of the files in the repository, the
qualifier ,,-dirty” will be appended to the version number, and this is not
what you want if you have not made a real change. In the file GNUmakefile

at the beginning, you will find a lot of assignments of the form

OPTION=VALUE

(VALUE may be empty). This assigns a value to an option. In most cases,
if the value equals ON this activates the compile time option. If the value is
empty, or different from ON, the option is not activated. The exception is the
AUDIO option, which may take various values (see below).

167

168 APPENDIX G. COMPILE-TIME OPTIONS

GPIO. (default: enabled) This option is needed on a RaspberryPi if you want
to use GPIO input/output lines from within piHPSDR, for example since
you have a controller (Controller1, Controller2, of G2 frontpanel) attached
or want to use GPIO lines for CW or PTT. It is important to deactivate
this option if you compile for a Desktop PC running LINUX!. This
is so because Desktop PCs/Laptops do not have GPIO lines. For MacOS,
this option is automatically disabled.

If you do not plan to let piHPSDR control any of the GPIO I/O lines you
better compile without this option. This is especially true if you plan to
attach some third-pary hardware (such as sound card ,,hats”) to the GPIO.

MIDI. (default: enabled) This option activates the possiblity to control piH-
PSDR via MIDI devices. It should normally be activated, unless you port
piHPSDR to some other operating system without MIDI support.

SATURN. (default: enabled) This option is for piHPSDR running on the CM4
module within a SATURN/G2 radio. It allows piHPSDR to directly com-
municate with the FPGA via XDMA. While it does no harm to have this
option activated on other systems, it also has no function there.

USBOZY. (default: disabled) This option includes support for legacy HPSDR
hardware connected via USB.

SOAPYSDR. (default: disabled) This option enables piHPSDR to communicate
with radios through the SoapySDR library.

STEMLAB. (default: disabled) This is an option for RedPitaya based radios.
These have an SDR app that must be started before one can connect. If
you have a RedPitaya exclusively being used as a radio, this app is most
likely auto-started when powering up the RedPitaya so you do not need
the STEMLAB option. This option allows to start the SDR application on
the RedPitaya through the web interface. If you have a RedPitay and no
autostart of the SDR application there, and not compiled piHPSDR with the
STEMLAB option, you can open a web browser, start the SDR application
on the RedPitaya, and then start piHPSDR. With the STEMLAB option,
this can all be done by piHPSDR.

AUDIO. (default value is empty) On Linux systems (including the Raspberry
PI), if setting the value to ALSA, the standard Linux ALSA sound library is
used for local audio output and local microphone input. In all other cases
PulseAudio is used. On MacOS, the AUDIO choice has no effect since the

169

PortAudio module is used no matter what the AUDIO setting is.

EXTENDED NR. (default: disabled) There is a special version of the WDSP
library that contains additional noise reduction facilities which are based on
rnnnoise and libspecbleach, see https://github.com/vu3rdd/wdsp. If
you have such a version of WDSP installed, these extended noise reduction
facilities can be used with piHPSDR if this option is ON. Note that activating
this option implies that the modified WDSP version is installed such that
the WDSP include file can be found by the compiler, and that the WDSP
(shared) library can be linked with the ,,-lwdsp” linker option. This nor-
mally means that the WDSP shared library is installed in /usr/local/lib,
while the WDSP header file is installed in /usr/local/include. The wdsp di-
rectory which is part of the piHPSDR repository is not used if EXTENDED NR

is activated.

SERVER. (default: disabled) This is not yet completed but is mentioned here
anyway. There are plans to have a client/server model in piHPSDR such that
you can have a ,,distant” radio with a computer running piHPDSR connected
to that radio, and a ,,local” computer running piHPSDR, and an internet
connection between the two computers. All the time-critical data exchange
happens between the ,,distant” radio and the ,,distant” computer using a
straight internet cable connection, while the user interface data is exchanged
between the two copies of piHPSDR running on the two computers.

After you have copied Makefile to GNUmakefile and modified the compile
time options, the two commands

make clean

make

are necessary to re-compile the program. Do not forget the ,,make clean”,
since most of the files need be recompiled after the compile time options have
changed!

170 APPENDIX G. COMPILE-TIME OPTIONS

Appendix H

GPIO Lines for Controllers,
CW, PTT

This section is only for piHPSDR running on RaspberryPi or similar sys-
tems with a GPIO (general purpose input/output) header. piHPSDR uses
libgpiod to access the GPIO, so this may also apply to other single-board
computers with a GPIO.

Fig. H.1 lists which GPIO lines are used for which controller option. In
the first column, the GPIO pin number (0–31) ist listed. The second column
indicates the function often associated with this pin in the RaspberryPi com-
munity, and the third column states on which connector (P1 or P5) this pin
can be found. P1 is the main 40-pin GPIO header of the RaspberryPI, while
P5 is an auxiliary connector that carries pins one should normally not use
(like those for a second I2C devices). The four last columns indicate the use
of this GPIO pin in four different setups, namely with no controller, with the
Controller1, with the Controller2 equipped with single encoders, and finally
with the Controller2 equipped with double encoders. The last case is electri-
cally identical to the G2 front panel. In red, with the string do not use!,
GPIO pins are marked which one should not use from within piHPSDR for
the case at hand. For the controllers, these are the pins associated with the
I2C interface(s). If there is no controller, we could, in principle, use all GPIO
pins at our discretion, but all those often used by other hardware are marked
as not to use. This ensures that, for example, piHPSDR even if compiled
with the GPIO option will run smoothly together with additional hardware

171

172 APPENDIX H. GPIO LINES FOR CONTROLLERS, CW, PTT

GPIO # Function Conn. No Controller Controller 1 Controller 2 V1 Controller2 V2
0 ID_SD P1 do not use! do not use! do not use! do not use!
1 ID_SC P1 do not use! do not use! do not use! do not use!
2 i2c_1 SDA P1 do not use! do not use! i2c_1 SDA i2c_1 SDA
3 i2c_1 SCLK P1 do not use! do not use! i2c_1 SCLK i2c_1 SCLK
4 GPCLK0 P1 do not use! E4_A E3_A E3_T_B
5 P1 CWL S4 available E2_A
6 P1 CWR S3 available E2_B
7 CE1 P1 do not use! E4_F available E3_B
8 CE0 P1 do not use! E3_F E5_B E5_T_A
9 MISO P1 do not use! CWL CWL E3_A

10 MOSI P1 do not use! CWKEY CWKEY E4_B
11 SCLK P1 do not use! CWR CWR E4_A
12 P1 CWKEY S2 CWOUT E5_B
13 PWM1 P1 do not use! S1 PTTOUT E5_A
14 TxD P1 do not use! PTTIN PTTIN PTTIN
15 RxD P1 do not use! PTTOUT I2C IRQ I2C IRQ
16 P1 PTTIN E3_A E4_A E4_T_B
17 P1 available VFO_B VFO_B VFO_B
18 PCM_CLK P1 do not use! VFO_A VFO_A VFO_A
19 PWM_FS P1 do not use! E3_B E4_B E4_T_A
20 PCM_DIN P1 do not use! E2_A E2_A E2_T_B
21 PCM_DOUT P1 do not use! E4_B E3_B E3_T_A
22 P1 PTTOUT FUNCTION E2_F E2_F
23 P1 CWOUT S6 E4_F E4_F
24 P1 available S5 E5_F E5_F
25 P1 available E2_F E5_A E5_T_B
26 PWM0 P1 do not use! E2_B E2_B E2_T_A
27 P1 available MOX E3_F E3_F
28 i2c_0 SDA P5 do not use! do not use! do not use! do not use!
29 i2c_0 SCL P5 do not use! do not use! do not use! do not use!
30 P5 do not use! do not use! do not use! do not use!
31 P5 do not use! do not use! do not use! do not use!

Fig. H.1: GPIO lines used with various controllers.

such as ,,audio hats”.

The function of GPIO lines actually used by the controllers are indicated in
black colour. No detailed explanation is needed since these are hard wired
and one therefore should not change this assignment.

Lines which are available but are not used by piHPSDR are marked as
available in blue colour. Then there are up to four input lines (CWL, CWR,
CWKEY, and PTTIN) and two output lined (PTTOUT, CWOUT) which can be as-
signed to available (blue-coloured) GPIO lines. Shown in Fig. H.1 is the
default assignment done in the program, but any of the six mentioned func-

173

tions (to be explained below) can be mapped on any of the available (blue
coloured) GPIO lines. Unfortunatedly, there is only a single available GPIO
line for the Controller2 with double encoders and the G2 front panel, and
only five available GPIO lines for Controller1, so it is not possible to assign
all six possible functions to GPIO lines. The six additional functions are

CWL (Input with pullup, active low). This input triggers a ”left paddle
pressed/ released” event for the iambic keyer built into piHPSDR. Note that
to use the built-in iambic keyer, the checkbox CW handled in Radio has to
be unchecked. This input is typically connected to a Morse paddle key.

CWR (Input with pullup, active low). This input triggers a ”right paddle
pressed/ released” event for the iambic keyer built into piHPSDR. Note that
to use the built-in iambic keyer, the checkbox CW handled in Radio has to
be unchecked. This input is typically connected to a Morse paddle key.

PTTIN (Input with pullup, active low). This input triggers a ”PTT on/off”
signal. Not that it does not toggle the PTT state, but enforces PTT as long
as the input is pulled low, and releases PTT when it goes high. This input is
typically connected to the PTT button of a microphone or the PTT output
of an external CW keyer.

CWKEY (Input with pullup, active low). This input triggers a ”CW Key down”
event. An RF pulse is emitted in CW mode as long as the input is pulled low
and the radio in in TX state. This input is typically connected to the KEY
output of an external CW keyer. Note that nothing happens if the radio is
not put into TX mode beforehand. Therefore, to use an external CW keyer,
one needs both a KEY and PTT connection to the keyer. To avoid chopping
of the first Morse element (dot or dash), PTT should become active shortly
before the first key-down event occurs (,,PTT lead-in time”). This lead-in
time can normally be adjusted for external CW keyers, I mostly use 150 msec
to be on the safe side.

PTTOUT (Output, active low). This output indicates with a low level that
piHPSDR is in the TX state. This output is typically used together with
radios such as the Adalm Pluto to activate a RF amplifier, because there is
no hardware output at the Adalm which indicates that the device transmits.
The output can also be used to activate an external power amplifier if the
radio has not PTT output.

CWOUT (Output, active low). This output monitors the state of the built-in

174 APPENDIX H. GPIO LINES FOR CONTROLLERS, CW, PTT

iambic keyer (low = key down, high = key up), and can be used to drive
external hardware with a tone generator that generates a low-latency side
tone, mixes it with the RX audio output, and feeds the combined signal to
the head phone. For direct keying (using the CWKEY line or the CW KEY

(keyer) action via MIDI) this output also follows the key-down/up state.

The reason for choosing ,,active low” for the output lines is that in the default
setup, the GPIO lines are switched to ,,input with pull-up” upon booting. An
input line with a built-in pullup resistor is, however, nearly indistinguishable
from an output line with high level.

If you are not happy with the default assignment of the ,,extra” GPIO lines,
this can be changed but you have to modify the file src/gpio.c and recom-
pile piHPSDR (there is no user interface for GPIO line assignment). To give
an example, suppose you are using the Controller2 V2 (with double encoders)
with an Adalm Pluto and need a hardware PTT out signal. This controller
a single spare GPIO line (GPIO14) which by default is assigned to PTTIN.
Locate the function gpio set defaults in the source code file. It starts like
this

void gpio_set_defaults(int ctrlr) {

t_print("%s: %d\n", __FUNCTION__, ctrlr);

switch (ctrlr) {

case CONTROLLER1:

//

// GPIO lines not used by controller: 9, 10, 11, 14, 15

//

CWL_LINE = 9;

CWR_LINE = 11;

CWKEY_LINE = 10;

PTTIN_LINE = 14;

PTTOUT_LINE = 15;

CWOUT_LINE = -1;

...

You clearly see the default assignments for the Controller1 case (a negative
value means ,,do not use”). If you scroll down, you will also find the assign-
ments for the other cases (Controller2 V1, Controller 2 V2, G2 front panel,

175

and ,,no controller”). The assignment for the Controller2 V2 (the version
with double encoders) is only few lines below and reads

case CONTROLLER2_V2:

//

// GPIO lines not used by controller: 14. Assigned to PTTIN

//

CWL_LINE = -1;

CWR_LINE = -1;

PTTIN_LINE = 14;

CWKEY_LINE = -1;

PTTOUT_LINE = -1;

...

To use GPIO14 for PTTOUT, simply modify the assignment such that the
variable PTTIN LINE is assigned the value -1 and PTTOUT LINE gets the value
14. That’s all except that you have to recompile simply by typing in the
command ,,make” in the piHPSDR directory (see Appendix K).

176 APPENDIX H. GPIO LINES FOR CONTROLLERS, CW, PTT

Appendix I

RaspPi: Activating the I2C
interface

Fig. I.1: Enabling the I2C controller.

If you want to use the Controller2 or the G2 frontpanel controller, the
Raspberry Pi I2C interface must be enabled. This is done by opening
Menu→Preferences→ Raspberry Pi Configuration and moving to the
Interfaces tab (shown in Fig. I.1. In the I2C line, move the button to
the right (marked by the red arrows) and restart the computer. Do not

177

178 APPENDIX I. RASPPI: ACTIVATING I2C

change the buttons in the other lines, the need not be as shown here.

Appendix J

Binary installation of
piHPSDR (RaspPi only)

This procedure has been tested on a Pi 4B, with a fresh and plain vanilla
operating system (32-bit ,,BullsEye”, released May 3rd 2023, Kernel version
6.1) obtained from
https://www.raspberrypi.com/software/operating-systems/

It also works with the current version (32-bit ,,BookWorm”, released Oct 10
2023, Kernel version 6.1). Although there are reports that piHPSDR does
not work as smoothly with the new ,,WayLand” window manager as it used
to work with X11, I personally cannot confirm this.

For new-bees, an easy binary-only installation is provided. This binary has
the following properties:

� It runs on a 32-bit Raspberry Pi OS, currently the ”bullseye” version.

� It has the GPIO, MIDI, SATURN options activated, and it uses the
ALSA audio module. So it does not use PulseAudio which means
you cannot send RX audio to HDMI monitors. See Appendix G for a
detailed description of the compile time options. If you want another
set of options, you have to compile from the sources.

The following caveat applies both to the binary installation and the compi-
lation from the source code: If you want to use the Controller2 or the G2

179

180 APPENDIX J. RASPPI: BINARY PIHPDSR INSTALLATION

frontpanel controller, the Raspberry Pi I2C interface must be enabled, as
described in Appendix I.

————– If the program does not start ————–

Binary installation means that the exectuable program has been com-
piled and linked on my machine, while it is intended to run on your
machine. Because Linux heavily uses so-called shared libraries, the
program can only run if the shared libraries that the executable de-
pends on are present (and can be found) on your machine, and that
the version numbers of the libraries are compatible. If piHPSDR does
not start, and instead you find in the log file (for binary installations:
in the directory pihpsdr.release in your home directory) a message
stating a missing library, then you have to jump to the next appendix
and compile from the sources, simply because the operating system on
your RaspPi is too different from the operation system on my machine
at the time I produced the binary.

Before you shout at me, because your most-wanted compile time option is
deactivated in the binary installation, let me explain that I want to satisfy
the maximum number of people but with minimum complexity in the instal-
lation process. Things such as using SoapySDR devices, or using PulseAudio,
involve heavy installation work (special libraries, etc. etc.) that make the
installation more complicated. So the decision was to offer a binary installa-
tion on as is basis, and refer to compilation from the sources (explained in
Appendix K) for every feature beyond.

—– Administrator privileges on RaspPi systems —–

The installation procedure depends on that you can execute ,,sudo”
commands in a terminal window. On a RaspBerry Pi this should not
be a problem, since the user account that you created during installation
will have administrator privileges by default.

Probably the easiest way do download the binary installation file pihpsdr.tar
is to clone the complete repository (as you would also do it for an installation

181

from source code) since the binary installation file is contained therein. So
open a terminal window. If you do so, you get a prompt and are in your
home directory. It is assumed that no directory named pihpsdr exists. If
it does, and if you are a new-bee, then this is likely a left-over from some
previous attempt to install the program and then it should be deleted.

again assuming that no file or directory named JUNK exists (if so, just replace
this name by another one). But look, if you are a new-bee, then most likely
these last two commands are not necessary since why should a pihpsdr

directory exist at top level in your home directory?

The binary installation is then done via the following commands, which have
to be typed in exactly as given here:

git clone https://github.com/dl1ycf/pihpsdr

cd pihpsdr

git checkout RELEASE-2.2-DL1YCF

cd release

tar xvf pihpsdr.tar

pihpsdr/install.sh

—– Release and Development version —–

You can leave out the command starting with git checkout, then
you will get the latest (development) version. Because this is updated
very frequently, it contains errors from time to time which will are
normally corrected very quickly, but you could simply fall into this pit.
Checking out the RELEASE-2.2-DL1YCF release version is safer since
this is more stable, and will only be updated for simple bug fixes. New
features will be included and accumulated in the development branch
until eventually a new release (with version 2.3) is made in the future.

The last command (install.sh) takes some time (depending on the speed
of your internet connection), since a lot of software need be installed that
piHPSDR depends on. At the end, a piHPSDR desktop icon should appear.
In principle, you can start piHPSDR now by double-clicking the icon. How-
ever (at least on my test system) I get always asked how I want to start the

182 APPENDIX J. RASPPI: BINARY PIHPDSR INSTALLATION

Fig. J.1: Suppress being asked options when clicking the piHPSDR desktop icon.

program (right away, in a terminal window, etc.). To get rid of this question,
open the file manager and go to Edit→Preferences (Fig. J.1). Activate
the check box where it is indicated by the red arrow and that’s it.

Note: Immediately after running the install script, the piHPSDR desktop
icon looks quite generic and does not show the HPSDR logo. Log out and
then log in again and the logo is there.

Appendix K

Installation of piHPSDR from
the sources (Linux, RaspPi)

This procedure has been tested on a Pi 4B, with a fresh and plain vanilla
operating system (32-bit ,,BullsEye”, released May 3rd 2023, Kernel version
6.1) obtained from
https://www.raspberrypi.com/software/operating-systems/

It also works with the current version (32-bit ,,BookWorm”, released Oct 10
2023, Kernel version 6.1). Although there are reports that piHPSDR does
not work as smoothly with the new ,,WayLand” window manager as it used
to work with X11, I personally cannot confirm this.

Installation from the sources is the preferred way of installing piHPSDR, for
the following reasons

� You get binaries that exactly ,,fit” to your operating system, it is not
important which version of the operating system you use.

� The procedure is the same for 32-bit and 64-bit systems, so it does not
matter which of the two variants you run.

� For all the compile time options (see Appendix G) you can individually
choose whether you want to activate or deactivate this option.

� This implies that if you want to use SoapySDR devices (like the Adalm
Pluto or RTL SDR sticks), or if you want to use PulseAudio as the

183

184 APPENDIX K. LINUX: PIHPDSR INSTALL FROM SOURCES

backend for local RX audio, you have to compile from the sources, since
these compile time options are not activated in the binary installation
package.

The following caveat applies both to the binary installation and the compi-
lation from the source code: If you want to use the Controller2 or the G2
frontpanel controller, the Raspberry Pi I2C interface must be enabled, as
described in Appendix I.

—– Administrator privileges on Linux systems —–

The whole installation procedure depends on that your user account is
an administrator account, such that you can execute ,,sudo” commands
in a terminal window. Some Linux distributions maintain a ,,sudoers”
file where users that are allowed to execute administrative task via
the sudo program are listed. In normal cases (you own the computer
and/or have installed the Linux operating system) you should have
administrator privileges.
On a RaspBerry Pi, the user account that you created during installa-
tion will have administrator privileges by default, so you can execute
sudo commands without being askes a password.

To install from the sources, open a terminal window. If you do so, you get
a prompt and are in your home directory. It is assumed that no directory
named pihpsdr exists. If it does, then this is likely a left-over from some
previous attempt to install the program and then it should be moved else-
where, since it may contain files with saved preferences (*.props) which you
may want to re-use.

The piHPSDR repository is downloaded, and support libraries are installed,
with the commands

git clone https://github.com/dl1ycf/pihpsdr

cd pihpsdr

git checkout RELEASE-2.2-DL1YCF

LINUX/libinstall.sh

185

—– Release and Development version —–

You can leave out the command starting with git checkout, then
you will get the latest (development) version. Because this is updated
very frequently, it contains errors from time to time which will are
normally corrected very quickly, but you could simply fall into this pit.
Checking out the RELEASE-2.2-DL1YCF release version is safer since
this is more stable, and will only be updated for simple bug fixes. New
features will be included and accumulated in the development branch
until eventually a new release (with version 2.3) is made in the future.

Depending on the internet speed (and the speed of your SD card or hard
disk), the first and the last command my take some time. The first command
loads the complete piHPSDR repository from my github accound. The last
command (libinstall.sh) contains all the magic, it not only loads all re-
quired RaspberryPi OS packages, but also loads and installs further libraries
piHPSDR depends on, including the SoapySDR library as well as SoapySDR
modules for the Adalm Pluto and RTL SDR sticks.

Note. The SoapySDR library, and all SoapySDR modules, must be compiled
from the sources (and the libinstall.sh script does so). The reason is, that
SoapySDR in the standard repository is quite outdated (version 0.7) while
piHPDSR requires a more recent version (0.8) because the SoapySDR API
has changed from 0.7 to 0.8.

The libinstall procedure also does some other things for you, including cre-
ating a desktop icon for piHPSDR. If you are on a Desktop PC running
LINUX, you will get error messages about libraries such as libgpiod that are
missing in the repository, which you can ignore.

Note: If you install on a Desktop PC running LINUX, or if you are on
a RaspPi but use the GPIO I/O lines for some other purpose, you must
de-activate the GPIO compile time option first, as described in Appendix G.

It is clear that double-clicking the piHPSDR desktop icon at this stage leads
nowhere, since first you need to compile the program. However, this is simply
done by the two commands

cd $HOME/pihpsdr

make

186 APPENDIX K. LINUX: PIHPDSR INSTALL FROM SOURCES

and that’t it! The first command is even not necessary (since you are in the
pihpsdr directory at that point). But if you make changes (e.g. changing
the compile time options as described in Appendix G, or apply some code
modifications) and want to re-compile later, this sequence is the safest way
to create a new binary, namely go to the pihpsdr directory and recompile by
executing ,,make”.

At this stage, double-clicking the piHPSDR desktop icon should start the
program. See the end of Appendix J how to get rid of a window popping
up and asking you how to execute the program. You have just compiled the
program with the default compile-time options (see Appendix G), namely
MIDI, GPIO, and SATURN, and with PulseAudio as audio module. If you
want, for example, use SoapySDR hardware such as the AdalmPluto or RTL
sticks, you have to enable SOAPYSDR and recompile as described in Appendix
G.

If you do not plan to use SoapySDR devices, you need not compile with
SOAPYSDR enabled and can skip the rest of this appendix.

Checking the SoapySDR installation. The installation of the SoapySDR
core and the modules for the Adalm Pluto and for RTL SDR sticks is the
most complicated task performed by the libinstall.sh command. Al-
though I tried hard to let everything be done auto-magically, you may want
to check if everything went well. If not, and if you do not plan to activate
the SOAPYSDR compile time option, you can simply ignore this. To check
the SoapySDR installation, open a new terminal window and just type the
command (be careful to use the correct capitalization!)

SoapySDRUtil -info

187

On my test system, this command produced the following output:

##

Soapy SDR -- the SDR abstraction library

##

Lib Version: v0.8.1-gbb33b2d2

API Version: v0.8.200

ABI Version: v0.8-3

Install root: /usr/local

Search path: /usr/local/lib/arm-linux-gnueabihf/SoapySDR/modules0.8-3

Module found: /usr/local/lib/arm-linux-gnueabihf/SoapySDR/modules0.8-3/libPlutoSDRSupport.so (0.2.1-b906b27)

Module found: /usr/local/lib/arm-linux-gnueabihf/SoapySDR/modules0.8-3/librtlsdrSupport.so (0.3.3-068aa77)

Available factories... plutosdr, rtlsdr

Available converters...

- CF32 -> [CF32, CS16, CS8, CU16, CU8]

- CS16 -> [CF32, CS16, CS8, CU16, CU8]

- CS32 -> [CS32]

- CS8 -> [CF32, CS16, CS8, CU16, CU8]

- CU16 -> [CF32, CS16, CS8]

- CU8 -> [CF32, CS16, CS8]

- F32 -> [F32, S16, S8, U16, U8]

- S16 -> [F32, S16, S8, U16, U8]

- S32 -> [S32]

- S8 -> [F32, S16, S8, U16, U8]

- U16 -> [F32, S16, S8]

- U8 -> [F32, S16, S8]

(Sorry for the tiny font, I did not want to wrap output lines.) Note the
API/ABI version (0.8). If you see 0.7 then you probably have installed
SoapySDR on your computer from the standard repositories, and this is not
going to work. The libinstall.sh command has been designed to work
(and has been tested on) a plain vanilla operating system, not on a ,,spoiled”
one where the user has manually installed additional software packages that
may induce incompatibilities. The best way out of such a problem is to
re-install Linux (on a RaspPi, simply use a new SD card to do so).

188 APPENDIX K. LINUX: PIHPDSR INSTALL FROM SOURCES

Appendix L

Installation of piHPSDR from
the sources (MacOS)

This procedure has been tested on a fairly recent MacBookAir (2020 model,
M1 Silicon CPU, running MacOS Ventura 13.5.2) and on old iMac (late 2013
model, Intel CPU, running MacOS Catalina 10.15.7. For the old iMac the
installation procedure takes very long, because most of the HomeBrew packages
are no longer available in pre-compiled form and have to be compiled from
the sources – but it works!

If you want to run piHPDSR on an Apple Macintosh computer (iMac, Mac
Mini, iBook Air, PowerBook), then you have to compile from the sources.
The author personally uses piHPSDR on an iMac, and would like to provide
piHPSDR as a program that you simply copy on your computer and double-
click. However, this is rather involved for an application built upon the GTK
graphical user interface. If you know how to do this, any help is welcome.
But for the time being, compiling from the sources is the only option.

189

190 APPENDIX L. MACOS: PIHPDSR INSTALL FROM SOURCES

————– A note on administrator privileges ————–

The whole installation procedure depends on that your user account is
an administrator account, such that you can execute ,,sudo” commands
in the terminal window. You may be asked the administrator password.
If your user account does not qualify for administrator work, then you
are simply not allowed to install the ,,HomeBrew” universe which is
the prerequisite for compiling piHPSDR. In normal cases (you own the
Mac) you should have administrator privileges.

I still do not know whether this is necessary or not, but the recommendation
is to start installing an X Window manager on the Macintosh. To the end,
in a web browse open the link

www.xquartz.org

and install the most recent package file found there. At the time of this
writing, this is version 2.8.5 released in January 26, 2023. The package
is good both for Intel and Silicon Macs. Download the package file (e.g.
XQuartz-2.8.5.pkg) to your desktop and run it by double-clicking.

Compiling piHPSDR on a Mac requires some basis LINUX/Unix skills. The
most important program to use is the Terminal application (Terminal.app),
that can be found in the Utilities folder that resides in the Applications
folder. It is suggested to drag this application into the ,,dock” so you have
quick access. Although MacOS has a complete Unix ,,under the hood”, one
needs additional software to to Linux-style programming. The most popu-
lar such ,,Unix enabler” packages are MacPorts and HomeBrew, I am using
HomeBrew but I know that piHPSDR can be compiled and run successfully
with MacPorts as well. The deal is as simple as follows: if you use MacPorts

then you are on your own, or have to rely on piHPSDR installations done
by the MacPorts folks. For HomeBrew, I provide semi-automatic installation
scripts that do all the complicated stuff for you.

To install from the sources, open a terminal window. If you do so, you get
a prompt and are in your home directory. It is assumed that no directory
named pihpsdr exists. If it does, then this is likely a left-over from some
previous attempt to install the program and then it should be moved else-
where, since it may contain files with saved preferences (*.props) which you

191

may want to re-use.

The piHPSDR repository is downloaded, and support libraries are installed,
with the commands

git clone https://github.com/dl1ycf/pihpsdr

cd pihpsdr

git checkout RELEASE-2.2-DL1YCF

MacOS/libinstall.sh

—– Release and Development version —–

You can leave out the command starting with git checkout, then
you will get the latest (development) version. Because this is updated
very frequently, it contains errors from time to time which will are
normally corrected very quickly, but you could simply fall into this pit.
Checking out the RELEASE-2.2-DL1YCF release version is safer since
this is more stable, and will only be updated for simple bug fixes. New
features will be included and accumulated in the development branch
until eventually a new release (with version 2.3) is made in the future.

The last command starts with installing Apple’s command line tools, in par-
ticular the Apple C and C++ compilers. You may get an error message from
xcode-select that the tools are already installed, which you can safely ig-
nore. Then, the HomeBrew universe is installed, and the installation starts
with asking you for the administrator password, tells you what it wants to
do and requires hitting Enter to proceed. On Apple Silicon Macs, you will
be asked the administrator password another three times, since here we have
to create three symbolic links in /usr/local (see the end of this section),
each of which requires administrator privileges.

Do not worry if HomeBrew was already installed on your computer, the in-
stallation procedure works in this case as well and does no harm. In addition
to the HomeBrew core, additional libraries that piHPSDR depends on (e.g.
GTK+3), the SoapySDR core and SoapySDR modules for several radios are
installed.

In case something went wrong, or simply to check that HomeBrew has been
correctly installed, open a new terminal window and type the command

192 APPENDIX L. MACOS: PIHPDSR INSTALL FROM SOURCES

brew config

This should give you lots of information on the currently installed version of
HomeBrew, but also on the CPU of your machine, the compilers and MacOS
version info, etc. If the command fails stating that the ”brew” command
has not been found, something is wrong, since the automatic installation
procedure should have taken care to update your shell profiles such that the
”brew” command is found. This is the reason why you have to open a new
terminal window to make this test, since in the originally opened window the
update of the command search path is not yet effective.

If you want to use SoapySDR, please check the Soapy installation. Open a
new terminal window and simply type the command (be careful to use the
correct capitalization!)

SoapySDRUtil -info

On my test system, this command produced the following output:

##

Soapy SDR -- the SDR abstraction library

##

Lib Version: v0.8.1-release

API Version: v0.8.0

ABI Version: v0.8

Install root: /usr/local

Search path: /usr/local/lib/SoapySDR/modules0.8

Module found: /usr/local/lib/SoapySDR/modules0.8/libHackRFSupport.so (0.3.3)

Module found: /usr/local/lib/SoapySDR/modules0.8/libLMS7Support.so (20.10.0)

Module found: /usr/local/lib/SoapySDR/modules0.8/libPlutoSDRSupport.so (0.2.1)

Module found: /usr/local/lib/SoapySDR/modules0.8/libRedPitaya.so (0.1.1)

Module found: /usr/local/lib/SoapySDR/modules0.8/libairspySupport.so (0.2.0)

Module found: /usr/local/lib/SoapySDR/modules0.8/libairspyhfSupport.so (0.2.0)

Module found: /usr/local/lib/SoapySDR/modules0.8/librtlsdrSupport.so (0.3.2)

Available factories... airspy, airspyhf, hackrf, lime, plutosdr, redpitaya, rtlsdr

Available converters...

- CF32 -> [CF32, CS16, CS8, CU16, CU8]

- CS16 -> [CF32, CS16, CS8, CU16, CU8]

- CS32 -> [CS32]

- CS8 -> [CF32, CS16, CS8, CU16, CU8]

- CU16 -> [CF32, CS16, CS8]

- CU8 -> [CF32, CS16, CS8]

- F32 -> [F32, S16, S8, U16, U8]

- S16 -> [F32, S16, S8, U16, U8]

- S32 -> [S32]

- S8 -> [F32, S16, S8, U16, U8]

- U16 -> [F32, S16, S8]

- U8 -> [F32, S16, S8]

In contrast to the RaspPi installation, SoapySDR is already at version 0.8 in
the HomeBrew repository so the modules can very simply be installed and need
not be compiled from the sources. I have added (as you can see) support for
quite a few SoapySDR radios, and most likely even more SoapySDR modules
are available in the HomeBrew repository.

193

If anything went wrong with the SoapySDR installation, you can safely ig-
nore this is you do not plan to compile piHPSDR with the SOAPYSDR
option. You also do not need to manually disable the GPIO option since on
MacOS, the GPIO and SATURN options do not apply and are automatically
deactivated. Without changing the compile time options (see Appendix G)
the MIDI option is the only one you get on MacOS.

Compiling the program then only requires two commands

cd $HOME/pihpsdr

make app

and that’t it! The first command are even not necessary at this point, since
you are in the pihpsdr directory at that point. But if you make changes in the
future (e.g. changing the compile time options as described in Appendix G,
or apply some code modifications) and want to re-compile later, this sequence
of commands is the safest way to create a new binary.

Note that saying make app instead of just saying make has the bonus that
a MacOS ,,app” bundle is automatically created within the piHPSDR di-
rectory. You can drag this bundle in the Finder, say, from the piHPSDR
directory in your home directory, to the Desktop, this can also be accom-
plished with the additional command

mv pihpsdr.app $HOME/Desktop

(take care that any older piHPSDR application on the Desktop is moved or
deleted first).

194 APPENDIX L. MACOS: PIHPDSR INSTALL FROM SOURCES

——– A note on Macs with Apple Processors ——–

On Mac computers with Intel processors, HomeBrew is installed in
/usr/local, while on Mac computers with Silicon (M1, M2, M2 pro)
processors, it is installed in /opt/homebrew. There is nothing wrong
with this, except that some compilers in their default setup look for files
in /usr/local but not in /opt/homebrew. Therefore, the installation
procedure, after completing the HomeBrew installation, looks whether
certain directories exist in /usr/local and, if not, places symbolic links
there that point to

/usr/local/lib → /opt/homebrew/lib

/usr/local/include → /opt/homebrew/include

/usr/local/bin → /opt/homebrew/bin

Meanwhile, the WDSP library is integrated into the piHPSDR source
code tree, so this may no longer be necessary for installing piHPSDR,
but is probably helpful for other projects.

